
Sanitization of embedded
network devices
Investigation of vendor’s factory reset
procedures

MAGNUS LARSSON

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2015

Sanitization of embedded network
devices

Investigation of vendor’s factory reset procedures

Magnus Larsson
magnus@stril.com

2015-05-07

Master’s Thesis

Examiner and Academic Adviser
Gerald Q. Maguire Jr.

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

 Abstract | i

Abstract

Embedded devices such as routers, switches, and firewalls commonly have sensitive information
stored on them such as passwords, cryptographic keys, and information about the network around
them and services that these device(s) provide. When disposing of or reselling this equipment in the
secondary market it is crucial to erase this sensitive information. However, there is an important
question that must be asked: Do the erase commands and routines offered by the device
manufacturers actually erase the sensitive data?

This thesis investigates methods and tools to determine the completeness of this erasure in
some common network devices. These methods are used on a sample of networking equipment
found to still contain sensitive information after being erased according to vendor
recommendations. A computer program was developed to show how this information can be
removed.

The information in this document is useful for equipment owners, brokers and others looking to
remarket their current equipment; all of whom want to minimize the risk of leaking sensitive data to
other parties.

Keywords

Network device, router, switch, sanitization, forensics, flash, EEPROM, configuration erase,
rommon. NVRAM, JTAG, programmer, RS-232, terminal, marker probability in data

 Sammanfattning | iii

Sammanfattning

Nätverksutrustning såsom routrar, switchar och brandväggar har ofta känslig information lagrad
internt, som lösenord, kryptografiska nycklar, information om nätverket runt dem samt tjänster de
tillhandahåller. Om denna utrustning ska säljas på andrahandsmarkanden eller på annat sätt byta
ägare är det viktigt att all känslig information raderas. Men kan man lita på att raderings rutiner
och metoder som tillhandahålls av tillverkaren verkligen raderar känslig data?

Denna avhandling undersöker lämpliga verktyg och metoder för att granska vilken information
som minnen i inbyggda system innehåller. Dessa metoder testas praktiskt på några system som
visar sig ha kvar känslig information efter att de raderats enligt tillverkarens rekommendationer. Ett
datorprogram som demonstrerar hur denna information kan undersökas och raderas finns med
som en del av avhandlingen.

Informationen i detta dokument är användbar för ägare av datakomutrustning, mäklare av
sådana samt andra som vill minimera risken för att läcka känslig information vid återförsäljning av
sin begagnade utrustning.

Nyckelord

Nätverksutrustning, router, switch informations sanering, flash, EEPROM, radera
konfigurationer, rommon, NVRAM, JTAG, programmerare, RS-232 terminal, markör sannolikhet i
data

 Acknowledgments | v

Acknowledgments

Thanks to:

Professor Gerald Q. Maguire Jr,

for all the valuable feedback and research help. You have the work capacity exceeding a
10 man around-the-clock research department!

My wife Rubi,

who hasn’t seen much of me lately. Thanks for your support.

My friend Fahad,

for providing feedback and listening to my boring talks about marker search
probabilities.

Ganesh and Dave,

for keeping me company during all the hours in the Stril Networks lab.

My father Tommy,

for giving valuable feedback on how to better explain the math section.

My grandmother Ingrid,

who pushed me to eventually finish my degree. I will take you to the diploma ceremony
in December!

Thanks also to Tommaso De Vivo at xjtag.com for letting me use your JTAG figures and lending me
your JTAG tool.

Stockholm, May 2015
Magnus Larsson

 Table of contents | vii

Table of contents

Abstract .. i
Keywords .. i

Sammanfattning .. iii
Nyckelord .. iii

Acknowledgments .. v
Table of contents .. vii
List of Figures .. xi
List of Tables ... xiii
List of Output Listings ... xv
List of Algorithms ... xvii
List of Erase Procedures .. xix
List of acronyms and abbreviations .. xxi
Conventions ... xxiii
1 Introduction ... 1

1.1 Background ... 1
1.2 Problem definition .. 2

 Semantics of the word “erase” ... 2 1.2.1
 Semantics of the word “sensitive information” 3 1.2.2
 Semantics of the word “sanitization” .. 3 1.2.3

1.3 Purpose ... 4
1.4 Goals ... 4
1.5 Delimitations ... 4
1.6 Structure of the thesis ... 5

2 Related work and useful technologies 7
2.1 Storage media in embedded systems .. 7

 Electrically Erasable Programmable Read-Only Memory 2.1.1
(EEPROM) ... 7

 Non-volatile Random Access Memory (NVRAM) 7 2.1.2
 Flash memory .. 7 2.1.3

2.2 Methods to inspect and erase nonvolatile memory 14
 Vendor’s erase procedure .. 14 2.2.1
 Configuration overwrite .. 14 2.2.2
 Delete and overwrite free space .. 14 2.2.3
 JTAG .. 15 2.2.4
 Other debug interfaces .. 18 2.2.5
 Custom software method ... 18 2.2.6
 Hidden debugging console ports ... 19 2.2.7
 External memory reader / programmer 20 2.2.8

2.3 Previous work and useful information ... 20
 U.S. National Institute of Standards and Technology (NIST) 20 2.3.1
 Analog data remenance of Hard Disk Drives 21 2.3.2
 Embedded system analysis ... 21 2.3.3
 Cisco flash file systems .. 21 2.3.4

viii | Table of contents

 Cisco boot sequence and configuration 22 2.3.5
 Cryptographic Erase .. 22 2.3.6

3 Research methods ... 23
3.1 Device platform and erase procedure to be tested 23
3.2 Marker generation and the risk for a false positive 23
3.3 Configuration and marker injection .. 25
3.4 Configuration erasure .. 26
3.5 Memory recovery and marker search ... 26

4 Investigation of sanitization completeness 27
4.1 Sanitization of the Cisco 1712 router .. 27

 Router overview and exterior interfaces 27 4.1.1
 Expansion cards: VPN card, ISDN and Ethernet switch 31 4.1.2
 ROM Monitor (Rommon) memory inspection 32 4.1.3
 JTAG exploration of the CISCO1712 mainboard 44 4.1.4
 BDM port access to the CISCO1712 ... 45 4.1.5
 Using a programmer to access the NVRAM of the 4.1.6

CISCO1712 ... 46
 Other board debug ports on the CISOC1712 51 4.1.7
 Investigation of the effect of vendor sanitization commands 4.1.8

on CISOC1712 .. 52

4.2 Sanitization investigation of a HP ProCurve Switch 2626 57
 Switch overview and interfaces .. 57 4.2.1
 Hardware investigation .. 57 4.2.2
 File system structure investigation ... 62 4.2.3
 Flash memory address region ... 65 4.2.4
 ProCurve Switch 2626 configuration interface 67 4.2.5
 Investigating ProCurve Switch 2626 sanitization 4.2.6

completeness ... 67

4.3 Sanitization investigation of a HP ProCurve Switch 2824 76
 Investigating ProCurve Switch 2824 sanitization 4.3.1

completeness ... 77

4.4 Sanitization investigation of a ProCurve Switch 2610-48 78
4.5 HP Procurve physical access security ... 79
4.6 Summary of vendor sanitization routines for the HP

Procurve switches .. 82
5 Sanitty – Making a sanitizer utility for Procurve switches 83

5.1 Software layers ... 83
 RS232 layer ... 84 5.1.1
 Term layer .. 85 5.1.2
 PCbench (ProCurveBench) layer ... 85 5.1.3
 Sanity_pc ... 85 5.1.4

5.2 Commands .. 85
5.3 Performance .. 86
5.4 Compatibility ... 88
5.5 Future improvements ... 88

 Flash chip autodetect ... 88 5.5.1

Table of contents | ix

 Sense nvfserase command presence .. 88 5.5.2
5.6 Forensic value and sanitization trust level ... 89
5.7 Comparison with chip read by an external programmer................... 89

 Desoldering of the flash chip .. 89 5.7.1
 Cleaning the chip ... 91 5.7.2
 Reading out the data .. 92 5.7.3
 Method comparison and conclusion on Sanitty correctness 93 5.7.4

5.8 Sanitization confirmation using Sanitty ... 95
6 Conclusions and Future work ... 97

6.1 Conclusions .. 97
 Proposal to vendors ... 97 6.1.1

6.2 Limitations .. 97
6.3 Future work ... 97

 Further development of Sanitty .. 98 6.3.1
 JTAGulator extest pin mapper ... 98 6.3.2
 Writing to NVRAM from Cisco Rommon 99 6.3.3
 Investigate more devices ... 99 6.3.4
 External storage of sensitive data .. 99 6.3.5
 Tool for the Motorola BDM interface .. 99 6.3.6
 In-circuit programming of a parallel EEPROM 100 6.3.7
 Proof of concept: Malicious code inside a flash controller 100 6.3.8
 Proof of concept: Remote VTP packet injection 100 6.3.9

 Fake a file spanning the entire flash .. 100 6.3.10
 Try to force a Procurve switch to reinitialize its flash file 6.3.11

system ... 101
 Non perfect random number generator impact on marker 6.3.12

strength .. 101

6.4 Reflections .. 101
References .. 103
Appendices ... 111

Appendix A. List of Erase procedures .. 113
Appendix B. Excel function generating random string markers 117
Appendix C. CISCO1712 investigations ... 119
Appendix D. ProCurve Switch 2626 investigation 145
Appendix E. ProCurve Switch 2824 investigation 155
Appendix F. ProCurve Switch 2610-48 investigation 159
Appendix G. Source Code for MPC862 mem controller decoder 165
Appendix H. Sanitty source code ... 171
Appendix I. Independence of data when searching for markers 222
Appendix J. Discussion on rejection of ugly markers 225
Appendix K. Alternative: Maximum contrasting markers? 227

 List of Figures | xi

List of Figures

Figure 1-1: Shopping note erase example .. 3
Figure 2-1: Example location of flash management functions 9
Figure 2-2: 32MB Compact Flash Card .. 11
Figure 2-3: PCMCIA Linear Flash (external view) 13
Figure 2-4: PCMCIA Linear Flash (internal view) 13
Figure 2-5: JTAG daisy chain, inspired by Figure 4.1 in the JTAG

specification [32] .. 16
Figure 2-6: IC with JTAG TAP interface. From

http://www.xjtag.com ... 16
Figure 3-1: Data and marker sequences ... 23
Figure 4-1: CISCO1712 router connector side ... 28
Figure 4-2: CISCO1712 inside view – with a MOD1700-VPN VPN

encryption module in upper left-hand corner and with
the 4 port Ethernet (lower left slot) ISDN (lower right
slot) and modules in place. ... 28

Figure 4-3: MOD1700-VPN VPN card removed. Top view (left) and
bottom view (right) ... 29

Figure 4-4: WIC-1B-S/T ISDN card removed. Top view (left) and
bottom view (right) ... 29

Figure 4-5: WIC-4ESW Ethernet switch card removed. Top view
(left) and bottom view (right) ... 29

Figure 4-6: View of main PCB with modules removed 30
Figure 4-7: EEPROM PLCC32 Testclip on the NVRAM of

CISCO1712 ... 38
Figure 4-8: EEPROM Control signals during Rommon priv NVRAM

test ... 39
Figure 4-9: EEPROM Control signals during Rommon priv fill

command ... 39
Figure 4-10: Cyclone MAX BDM debugger connected to a CISCO1712

BDM port ... 46
Figure 4-11: CISCO1712 EEPROM programmer connection to the

GQ-4X programmer ... 47
Figure 4-12: CISOC1712 power supply with external voltage control

on its 5V lead. .. 48
Figure 4-13: Programmer connected to CISCO1712 NVRAM chip. 51
Figure 4-14: Front of HP ProCurve Switch 2626 (Part number

J4900A) ... 57
Figure 4-15: Main board ProCurve Switch 2626 (J4900A) 59
Figure 4-16: Front of ProCurve Switch 2824 (Part# J4903A) 76
Figure 4-17: Main board of ProCurve Switch 2824 (Part# J4903A) 76
Figure 5-1: Sanitty software layers. Green = implemented. Red is

future add-ons. .. 84
Figure 5-2: Procurve J9088A-2610-48-flash chip location 90
Figure 5-3: Procurve J9088A-2610-48-flash chip location close up 90
Figure 5-4: Heat air gun in drill stand (left). JBC Advanced JT7000

professional hot air desolder station (right) 91
Figure 5-5: Tack flux residue and dirt on chip pins 91

xii | List of Figures

Figure 5-6: VTiny low cost microscope ... 92
Figure 5-7: Leica stereo microscope .. 92
Figure 5-8: Flash contents. Sanitty source (upper), Flash

programmer source (lower) .. 93
Figure 6-1: The JTAGulator tool (pink) probing the JTAG pinout of

a NetScreen 5GT firewall .. 99
Figure 6-2: Data and marker sequences. One symbol in each is

selected (red). .. 222
Figure 6-3: Full state table over the probabilities of a marker and

data symbol match .. 223

 List of Tables | xiii

List of Tables

Table 1-1: Binary prefix convention... xxiii
Table 2-1: NOR and NAND flash comparison [12] 8
Table 2-2: Flash and EEPROM ICs in some selected embeded

systems .. 20
Table 2-3: Cisco's Class A, B, and C flash file systems [63]22
Table 3-1: Procedure for testing erase procedure 23
Table 3-2: Marker probability examples .. 24
Table 3-3: Probability of finding random character strings in a

random text .. 25
Table 4-1: CISCO1712 Interesting objects on main logic board 30
Table 4-2: First two markers ... 33
Table 4-3: Examples of priv mode commands for CISCO 171234
Table 4-4: NVRAM contents - some highlights 35
Table 4-5: Cookie contents .. 37
Table 4-6: Measured EEPROM pins .. 38
Table 4-7: Probable CISCO1712 flash file format structure 42
Table 4-8: Class B file header from fileheader.h from

http://si.org/cffs/ ... 42
Table 4-9: CISCO1712 J1 JTAG port pinout. .. 44
Table 4-10: CISCO1712 J3 BDM port pinout. ... 45
Table 4-11: CISCO1712 onboard NVRAM read result with a Xeltek

SP6100 programmer and varying supply voltage 50
Table 4-12: CISCO1712 markers ... 52
Table 4-13: Sanitization results of the CISCO1712 56
Table 4-14: Interesting components of the Procurve 2626

mainboard ... 58
Table 4-15: ProCurve Switch 2626 file system header field structure

prepending data .. 64
Table 4-16: ProCurve Switch 2626 markers ... 67
Table 4-17: Result of sanitization investigation of HP ProCurve

Switch 2626 (Part number J4900A) 75
Table 4-18: Procurve 2626 configuration sanitization algorithm 75
Table 4-19: Interesting components of the Procurve 2824

mainboard .. 77
Table 4-20: ProCurve Switch 2824 markers ... 77
Table 4-21: ProCurve Switch 2610-48 markers .. 78
Table 4-22: Procurve Switch 2610-48 physical security test martkers 79
Table 4-23: Summary of Procurve switches tested 82
Table 5-1: sanitty commands ... 86
Table 5-2: Comparison of the Sanitty and external flash reader

data extraction method .. 95
Table 5-3: ProCurve Switch 2610-48 markers 96

 List of Output Listings | xv

List of Output Listings

Output listing 4-1: Output of show version command on CISCO 1712 31
Output listing 4-2: Acquiring PRIV mode access ... 33
Output listing: 4-3: CISCO1712 Priv mode flash info and meminfo

commands ..34
Output listing 4-4: Initial portion of the NVRAM (highlighting the cookie) 36
Output listing 4-5: CISCO1712 Priv mode flash info and meminfo

commands ... 40
Output listing 4-6: CISCO1712 Rommon PRIV mode dir flash 40
Output listing 4-7: CISCO1712 Priv mode flash memory dump 41
Output listing 4-8: CISCO1712 flash deleted file header 41
Output listing 4-9: CISCO1712 flash active vlan.dat ... 41
Output listing 4-10: CISCO1712 modify file delete flag ..43
Output listing 4-11: CISCO1712 RSA key generation ... 53
Output listing 4-12: CISCO1712 private-config in “dir NVRAM:” 53
Output listing 4-13: Marker verification in vlan.dat file before sanitization 54
Output listing 4-14: Successfully erasing an NVRAM .. 57
Output listing 4-15: Failing to erase an electrically write protected NVRAM 57
Output listing 4-16: Debug jumper .. 60
Output listing 4-17: ProCurve Switch 2626 ROM Monitor console 61
Output listing 4-18: ProCurve Switch 2626 Bench mode memory

manipulation commands .. 62
Output listing 4-19: ProCurve Switch 2626 Bench mode fs command 62
Output listing 4-20: ProCurve Switch 2626 Bench mode command “fs od

os/primary” ... 63
Output listing 4-21: ProCurve Switch 2626 Bench mode “fs ls flash”

command ... 63
Output listing 4-22: Procurve “fs nvfswalk” output examples 64
Output listing 4-23 Investigation of the Procurve 2626 flash memory region 66
Output listing 4-24: show config, before erase ... 67
Output listing 4-25: fs nvfswalk, before erase ... 68
Output listing 4-26: delta file, before erase ... 69
Output listing 4-27: mgrinfo.txt, before erase ..70
Output listing 4-28: host_ssh1 file, before erase ..70
Output listing 4-29: show config, after erase .. 71
Output listing 4-30: delta file data, after erase ... 72
Output listing 4-31: mgrinfo.txt data after erase ... 73
Output listing 4-32: host_ssh1 file after erase .. 74
Output listing 4-33: Procurve 2626, proof of concept, byte erase in flash 76
Output listing 4-34: ProCurve Switch 2824 diagnostic mode legal message 77
Output listing 4-35: ProCurve 2610-48 new commands 78
Output listing 4-36: Procurve front panel security preparation 80
Output listing 4-37: ProCurve Switch 2610-48 markers found in bench

mode (red highlight) .. 81
Output listing 5-1: Procurve Reading a 256 byte block through Sanitty 87
Output listing 5-2: Procurve writing of a single byte through Sanitty 88
Output listing 6-1: CISCO1712 HW explore markers injection 119
Output listing 6-2: CISCO1712 Rommon PRIV mode command set 120

xvi | List of Output Listings

Output listing 6-3: CISCO1712 PRIV NVRAM Dump (from memory offset
0x68000000) truncated at 0xBF0 bytes. 122

Output listing 6-4: CISCO1712 cookie fields ... 126
Output listing 6-5: Rommon "show 862 registers" .. 128
Output listing 6-6: CISCO1712 MPC862 memory controller banks 136
Output listing 6-7: CISCO1712 marker locations in NVRAM using “show

memory” command .. 138
Output listing 6-8: ProCurve Switch 2626 Bench jumper mode commands 145
Output listing 6-9: ProCurve Switch 2626 File system investigation

commands .. 149
Output listing 6-10: Procurve 2824 marker search after factory reset, in

Bench mode .. 155
Output listing 6-11: Procurve 2610-48 (J9088A), nvfsdir, nvfserase and

nvfsdfill command playaround .. 159
Output listing 6-12: Procurve 2610-48 (J9088A), marker inspection (using

Sanitty) after HP_2626_BUTTON procedure 162
Output listing 6-13: MPC862 memory controller configuration decoder in

Java ... 165
Output listing 6-14: term.h .. 171
Output listing 6-15: pcbench.h ... 176
Output listing 6-16: term.c ... 182
Output listing 6-17: pcbench.h ... 190
Output listing 6-18: pcbench.c .. 196
Output listing 6-19: sanitty_pc.c .. 211
Output listing 6-20: log.h .. 218
Output listing 6-21: log.c .. 219

 List of Algorithms | xvii

List of Algorithms

Algorithm 2-1: Free space overwrite with multiple files 15
Algorithm 2-2: Free space overwrite with one file ... 15

 List of Erase Procedures | xix

List of Erase Procedures

CISCO_IOS_1 .. 113
CISCO_IOS_2 .. 113
HP_2626_CLI ... 115
HP_2626_BUTTON ... 115
HP_PROCURVE_SANITTY ... 116

 List of acronyms and abbreviations | xxi

List of acronyms and abbreviations

AT Advance Technology
ATA AT Attachment
BDM Background Debug Mode
BGA Ball Grid Array
BSDL Boundary Scan Description Language
CFI Common Flash Interface
CLI Command Line Interface
CPU Central Processing Unit
DIP dual in-line package
ECC Error-Correcting Codes
EPROM Erasable programmable read only memory
EEPROM Electrically Erasable Programmable Read-Only Memory
FTL Flash Translation Layer
GUI Graphical User Interface
IEEE Institute of Electrical and Electronics Engineers
IC Integrated Circuit
I/O Input/Output
IOS Internet Operating System (for a Cisco router)
JTAG Joint Test Action Group
LAN Local Area Network
LSB Least Significant Bit
MAC Media Access Control (address)
Mb Megabit
MLC Multi Level Cell (Flash)
MMU Memory Management Unit
MSB Most Significant Bit
NIST National Institute of Standards and Technology
NVRAM Nonvolatile Random Access Memory
ONIF Open NAND Flash Interface Specification
PCB Printed Circuit Board
PRNG PseudoRandom Number Generator
RAM Random Access Memory
RNG Random Number Generator
SATA Serial ATA
SDRAM Synchronous Dynamic Random-Access Memory
SLC Single Level Cell (flash memory)
SNMP Simple Network Management Protocol
TAP (JTAG) Test Access Port
TCK Test Clock
TCL Tool Command Language
TDI Test Data In
TDO Test Data Out
TFTP Trivial File Transfer Protocol
TMS Test Mode Select

xxii | List of acronyms and abbreviations

TMSC Test Serial Data
TLC Tri Level Cell (Flash)
TRST Test Reset
TTL Transistor-transistor logic
TSOP Standard Thin Small Outline Package
UART Universal asynchronous receiver/transmitter
UNEDA United Network Equipment Dealer Association
Vcc positive power supply voltage
VLAN Virtual LAN
VTP VLAN Trunking Protocol
WEEE Waste Electrical and Electronic Equipment

 Conventions | xxiii

Conventions

Hexadecimal numbers are prepended by 0x in text, such as 0xFF

The number representation in console logs and input/output from various devices will of course
have the representation utilized by that particular device. Thus if a given device requires hex values
to be entered as (hex)FF that notation will be used in the console logs.

“<snip>” inside a console log indicates some parts of the log have been removed.

Prefixes in front of a bit (b) or byte (B) are binary prefix. Table 1-1 lists the first examples and also
the IEC prefix equivalent [1].

Table 1-1: Binary prefix convention

Prefix Value in front of bit or byte IEC binary prefix notation

(K) Kilo 1024 Ki, kibi

(M) Mega 10242 Mi, mebi

(G) Giga 10243 Gi, gibi

(T) Tera 10244 Ti, tibi

Overlining an electrical signal means the signal is inverted. For example: WE is an inverted Write
Enable signal.

 Introduction | 1

1 Introduction

Today there are both economic and environmental sustainability advantages of giving a piece of
equipment a new home once it is unneeded in its current deployment. However, a transfer of
ownership requires sensitive configuration data to be removed, otherwise this (business or
societally) sensitive data could be improperly disclosed. Improper disclosure of configuration data
could provide information that might lead to harm to the business or society. For example, knowing
the system administrator’s password for a previously used piece of equipment might provide an
attacker with either the current password used by the original owner for other equipment or insight
into their choice of passwords. The later could facilitate a brute force attack on the password (by
reducing the search space) of the original owner’s existing equipment.

Producing advanced electronic equipment consumes environment resources such as water,
energy, and raw materials. The European Union’s directive on waste electrical and electronic
equipment (WEEE) prioritizes reuse over recycling of equipment to prevent (or at least delay) this
equipment from becoming waste [2 Para. 6]. As a result, there will be extensive re-use of equipment
by new owners.

This thesis investigates one aspect of the change in ownership for networking equipment by
focusing on erasing sensitive data stored as part of the device’s configuration information.

1.1 Background

Embedded networks systems such as routers, switches, firewalls, and wireless access points have
configuration data and software stored in them. The type of memory used for storing this
information includes flash memory chips soldered on a circuit board, removable flash cards, and
hard disk drives. The systems are commonly controlled either via a Command Line Interface (CLI)
(accessible using an asynchronous RS-232 connection or a ssh/telnet virtual terminal connection
via a network interface). In some cases, the device may also be configured and controlled via a web
interface provided by a built-in webserver. Unfortunately, the storage used for the configuration
data is often inaccessible by means other than the manufacturer’s supplied methods, hence when
attempting to erase the device’s configuration it is important to know if the vendor provided
methods actually erase the configuration data.

Figur 1-1: Example of storage devices in an embedded system

2 | Introduction

1.2 Problem definition

Enterprise networks consist of many devices that communicate with each other. When a network
attached device is decommissioned and transferred to another (untrusted) party, it is important to
erase sensitive data present in the device to avoid leaking this information to another party.

Examples of sensitive information include:

• Passwords for user or administrator accounts to gain access to the device

• Wi-Fi* keys

• Firewall rules

• Information about the internal network, such as VLAN structure and routing

• Protocol authentication keys, such as SNMP community strings, VLAN Trunking
Protocol (VTP) password, etc.

• The version of software previously present in the device. This information could be
sensitive since it suggests which version of software an enterprise might currently be
using in their network and could facilitate attacks. This is especially true if this specific
version has known security vulnerabilities.

• The passwords and keys in the decommissioned device could still be used somewhere in
the remaining active network (of the former owner), hence if they can be recovered,
these values could be used in an attack on the former owner’s network.

Instead of selling the equipment, the original owner of the decommissioned equipment may
send the device to a scrap yard for recycling/destruction. However, under the EU’s WEEE Directive,
which promotes reuse before recycling, this is not the preferred way to dispose of equipment in an
environmentally friendly way. Additionally, this method still presents a risk of leaking sensitive
information, as when a device is sent to a scrap yard for destruction there remains a danger that the
storage media or the entire device is stolen or resold, thus leading to the risk that the sensitive
elements of the configuration could be improperly disclosed to other parties.

As we can see from the above, regardless of the method used to deal with decommissioned
networking devices, a method for securely erasing sensitive data is necessary.

 Semantics of the word “erase” 1.2.1

To avoid misunderstandings between the meanings of different words describing information
removal, I will discuss and define these terms as they will be used in this thesis. These definitions
are by no mean universal, but rather the authors’ view of their semantics.

According to the Merriam-Webster Dictionary “Erase” means “remove” [3]. In the context of
this thesis project, we seek to remove information from a network device. To erase data from a
memory means that we remove the information used to represent (i.e., encode) this data.

Does erasing data mean that it can never be recovered? In everyday semantics I would argue
that yes, erasing data would mean that it can never be recovered; but it is impossible to ensure that
data can never be recovered. Because we do not know yet what techniques might be invented in the
future that could be used to recover the erased data. For this reason, the definition of the verb erase
used in this thesis will be:

Erase := “The process of significantly reducing information content.”

* In this thesis we will use the term Wi-Fi to refer to all wireless local area network equipment that is
compatible with one or more of the IEEE 802.11 standards, even if this equipment is not certified by one of the
testing laboratories approved by the Wi-Fi Alliance (http://www.wi-fi.org/).

http://www.wifi.org/

Introduction | 3

The difference in the ease of reading information before and after the erase operation should be
very different. The exact difference will not be explicitly defined, but it should be much harder to
recover information after it has been erased. An example is the written shopping note shown in
Figure 1-1. The information, in this case the word “MILK” has been erased in two ways:
(1) processed by an eraser gum and (2) overwritten by doodling. Although the results are completely
different, they are both examples of methods of erasing information because it harder to recover the
original word after the erase operation. For analog information, the “erase” operation can be seen as
reducing the signal to noise ratio.

Figure 1-1: Shopping note erase example

 Semantics of the word “sensitive information” 1.2.2

In the case of embedded devices completely erasing a memory is impractical and in most cases
unnecessary. For instance, the memory may store meta data about the device such as its serial
number, Media Access Control (MAC) addresses for the Ethernet interfaces, and other factory set
parameters and firmware which are necessary for the device to function properly. In this thesis we
focus on a subset of the information in the device’s memory, namely the data which has been stored
in the memory of the device during its normal use. Some of this data is private to the current user
and could cause harm to this user or other entities if this data were to be disclosed to unauthorized
parties. We will refer to this information as sensitive information and define it as:

Sensitive information := “Confidential information which could potentially cause harm if
disclosed to unauthorized parties”

An example of sensitive information is passwords. However, the actual risk of harm depends on
the context. For instance, a password found in a decommissioned router might not be sensitive if
the previous owner used unique and uncorrelated passwords for each device. In most contexts, the
version of the operating system might not be considered sensitive information. However, if a
decommissioned network switch has an asset tag glued to it indicating the previous owners’ name,
then the combined knowledge of the previous owner and operating system version might facilitate
an attack on current devices in the previous owner’s network, which may be running the same
version of the operating system or firmware. While techniques exist to profile a device’s OS over the
network [4], knowing the likely version of the OS makes it easier to exploit known bugs of the
specific version of the operating system and to exploit related security holes.

 Semantics of the word “sanitization” 1.2.3

In this paper we define the word sanitization as

Sanitization := “A process that erases sensitive information.”

Sanitizing a memory inside a router does not require that all of the information stored in the
memory be fully erased, but rather only the sensitive information must be erased. Sanitization is a
weaker form of erasure. Therefore, a memory that is erased is also sanitized.

MILK

Original Erased 1 Erased 2

MILK

4 | Introduction

1.3 Purpose

The initial purpose of this thesis project is to test if some common embedded network devices
typically used in enterprise networks have flaws in their erasure routines. If the manufacturer’s
erasure routine is unsafe or its safety is unknown, then this project should propose alternative
methods to safely erase the sensitive data, i.e., to sanitize the device.

The method used to erase configuration data must be sufficient to ensure that transfer of
ownership does not risk leaking any of the sensitive data. Furthermore, the method should be cost
effective and avoid rendering the device unusable.

The existence of an appropriate erasure mechanism would allow reuse of network equipment,
benefiting both the environment and all of the parties potentially involved in the transaction, e.g.
seller, broker, and buyer. However, the original manufacturer of the equipment might have an
economic incentive to sell new devices, rather than facilitating old devices remaining in circulation.
However, environmental legislation, such as the EU’s WEEE, requires manufacturers not to design
products in such a way that would prevent their re-use [2Sec. Article 4, Product Design]. Therefore,
in the long run, both environmental and commercial customers’ demands may place pressure on
manufacturers to provide appropriate erasure routines in their software. Note that it is clearly in the
interest of the customer who purchases the equipment from the original manufacturer to expect that
this vendor will provide appropriate erasure routines, as it is this customer’s configuration data that
would be exposed!

1.4 Goals

The goals of this project are:

1. Investigate whether common networking devices correctly and completely sanitize sensitive data.
2. Consider various alternatives methods to sanitize this data
3. Select a suitable method from those considered in item (2) to erase sensitive configuration data

from a device in satisfactory, easy, and cost effective manner. This erasure mechanism should be
suitable to facilitate transfer of ownership of the device.

4. Develop the specifics of the erasure method and implement a “proof of concept” for the devices
considered in item (1).

5. Propose a method vendors could use in their new software implementations that would assure
complete erasure of sensitive data, i.e., that would guarantee that the device is santized.

1.5 Delimitations

This thesis will consider binary information stored in a networking device. We will assume that
storing a new value in a storage cell completely overwrites any earlier data. The process of extracting
information erased from storage media below the “below binary” level, e. g., data remanence in
erased magnetic media is outside the scope of this thesis. Imperfections in current erasure routines
investigated will be limited to those related to programming and logical design, rather than physics.
Section 2.3.2 gives a brief overview of data remanence. For further details of how to prevent data
recovery from magnetic media the reader is referred to the paper “Secure Deletion of Data from
Magnetic and Solid-State Memory” by Peter Gutmann [5].

The devices that will be considered will primarily be older devices commonly used in enterprise
networks, such as routers, switches, firewalls, and access points from vendors such as Cisco, HP,
and Juniper for the following reasons:

• Since these are commonly used device in an enterprise network infrastructure,
information recovered from a decommissioned device is likely to be a security threat to
the enterprise’s network.

• The value in the secondary market of enterprise class equipment is high enough to
motivate spending time securely erasing configuration data from the device in order to

Introduction | 5

prepare it for resale. While equipment that has been previously deployed in a small
office / home device, such as that from Netgear or DLink, is more likely to simply be
scrapped – rather than resold, as its residual value is low (to very low).

• Enterprise equipment is expected to be configured, deployed, and managed by
professionals. One would expect greater security awareness and maturity in the
software of a US$3,000 router than a US$50 router.

Older devices were utilized in this thesis project because:

• The risk of destroying a new US$10,000 router in the laboratory while doing this
research is high, while the expense versus risk ratio is acceptable for an older device.

• Decommissioned equipment is generally older, hence we investigate them first.

1.6 Structure of the thesis

Chapter 2 presents relevant information about previous work done related to this project. Chapter 3
presents methods for reading and writing memory storage of embedded devices and introduce a
method to test existing erasure procedures. Chapter 4 presents the results of the testing a proposed
new method for secure erasure. Chapter 5 presents some ideas for improving the completeness of
the erasure. Chapter 6 summarizes the results of this thesis project, suggests future work, and
discusses some reflections on social, environmental, and ethical issues not addressed elsewhere in
the thesis.

 Related work and useful technologies | 7

2 Related work and useful technologies

This chapter presents the technology behind some storage media and tools useful to access their
contents and a summary of references to work already done by others in this field.

2.1 Storage media in embedded systems

Embedded devices commonly store their firmware and configuration in media which preserves the
stored information even while power is not applied to the system. Memory media that can be
written to more than once and retains data without being powered is called non-volatile memory.
Examples of non-volatile memory are hard disk drives, EEPROM, and flash.

 Electrically Erasable Programmable Read-Only Memory (EEPROM) 2.1.1

The EEPROM was invented in 1978 at Intel by George Perlegos. EEPROM as an improvement over
erasable programmable read only memory (EPROM) which had to be erased by exposure to
ultraviolet light [6]. Memory in an EEPROM can be read, erased, and written a single byte at a time
(as opposed to flash memory, which has to be erased in blocks) [7]. The random access memory
(RAM) like interface of EEPROM makes it easy to add EEPROMs directly to the CPU address/data
bus without requiring any glue circuitry in between them [8]. EEPROMs are more expensive to
produce than flash, so the typical size of an EEPROM is less than 1 Mb [7].

In the original EEPROM devices, the address and data interfaces are accessed in parallel, e.g.
1 byte of data was passed over 8 pins. There are also serial EEPROMs with a bit serial interface
where the address and data are read and written 1 bit at a time [9]. The advantage of the serial
interface is that less pins are needed, thus the IC package can be smaller for a given capacity
device [10].

Protocols used to access a serial EEPROM includes SPI, I²C, Microwire, UNI/O, and 1-Wire*.
The user manual for the Xeltek IS01 programmer contains tips on how to design a printed circuit
board (PCB) to permit easy connection in order to permit in-system programming of a soldered chip
[11 pp. 8–13]. One particularly useful bit of advice is to have the board power the EEPROM (i.e., to
provide a positive power supply voltage, Vcc), but to ensure that no other components try to access
the EEPROM while it is being read or programmed by an in-circuit programming device.

 Non-volatile Random Access Memory (NVRAM) 2.1.2

NVRAM devices have two methods to maintain their information while power is removed [9]:

• A dedicated battery supplies power.

• Data is saved in an EEPROM at power off and restored after power is returned.

 Flash memory 2.1.3

Flash memory is a non-volatile semiconductor storage media developed and was introduced in the
1980s by Toshiba and Intel. There are two major types (NOR and NAND) with different transistor
structures used to create each data cell. The table below summarizes some characteristic high level
differences of these two types of flash memories. Further details of these memories (how they can be
accessed, how they can be read, etc.) is given in the following paragraphs.

* See http://en.wikipedia.org/wiki/EEPROM#Serial_bus_devices

http://en.wikipedia.org/wiki/EEPROM#Serial_bus_devices

8 | Related work and useful technologies

Table 2-1: NOR and NAND flash comparison [12]

 NOR NAND
Production cost per MB High Low
Write performance Slow Fast
Erase performance Slow Fast
Erase cycles limit 10,000 100,000
Random bit flips in data Less common More common
Production imperfections Less common More common
Interface Standard memory interface

Can be mapped into memory
space as normal memory.
CPU can address individual
random words and execute
code directly from the device.

Differs between vendors
Data is read and written in
blocks.
Code must be copied to RAM
before execution.
Needs “bad block” management.

Typical application Small (~4 MB) boot loader
mapped into address space

Camera memory card

2.1.3.1 NAND Flash

Originally NAND flash memory could differentiate between two different cell charge levels and thus
store one bit per cell. To increase the data density per unit of silicon area and to reduce production
costs, flash producers developed ways to store more information per cell. The original 1 bit per cell
NAND is now referred to as Single Level Cell (SLC). NAND flash that stores more than one bit per
call is called Multi Level Cell (MLC). An example of MLC is a Tri Level Cell (TLC) NAND which
stores 3 bits per cell. The drawback of encoding more information into each cell is reliability. Bit
errors in data are more likely to happen and the number of write/erase cycles before a cell is worn
out decreases by a factor of 10-20 between a SLC and a TLC. [13]

Cells are grouped into “pages” which are the smallest addressable unit. Page sizes differ, but are
commonly a multiple of 512 bytes + some extra bytes to store error correction information or flags.
For example, 512 bytes +16 additional bytes = 528 bytes. However, it is completely up to the
processor that is connected to this memory to decide how to use the page and where and how to
store data, Error-Correcting Code (ECC) bits, and flags within a page. To read a page the processor
sends a read command and an address to the chip, then the page is placed in an internal register
which can then be shifted out.[14]

Two operations are used to modify the contents of a NAND flash: “program” and “erase”. Erase
resets all cells to binary true (“1”). The erase operation can only be performed on a group of pages
(called a “block”) at the same time. Programing is done page by page and can only invert a binary 1
to a binary 0. Therefore, if we need to write a 1 to a page cell which is currently a 0, then the whole
block has to be erased and rewritten.[14]

2.1.3.2 Flash standard interfaces

A group of flash producers joined forces and created a common NAND flash interface standard
called “Open NAND Flash Interface Specification” (ONIF) [15]. The specification defines issues such
as pinouts, electrical interface, commands, and how producers flag factory defects. There are also
commands for probing a compatible chip for it specifications, such as memory organization and
capabilities.

The JDEC Common Flash Interface (CFI) [16] specifies a standard way to put supported flash
chips into a query mode and to read out parameters, such as manufacturer, memory organization,
and timing specifications.

Related work and useful technologies | 9

2.1.3.3 Managed NAND flash

NAND flash memory in its raw form is unreliable. However, methods can be implemented to make
it appear to be more reliable. The main problems and their solutions are:

Bad blocks NAND flash chips are produced on silicon wafers. Manufacturing imperfections
cause some storage cells to be defective. Factory defects are typically ~1% of the
available storage blocks [17], but even flash chips with 80% factory verified
defects have been integrated into consumer grade products [18]. During use
additional blocks may become defective. For these reasons bad block handling is
crucial. To discover and recover from blocks failing during normal use, error-
correcting codes (ECC) must be stored together with the data.

Cell wear Each time a cell is written or erased it loses some of its ability to store data. When
data is repeatedly written to the same cells, these cells eventually become
unreliable. Flash chips commonly have a defined (on the device’s datasheet)
maximum number of times a block can be rewritten. For instance the Intel
K9F5608X0D 32 MB NAND specifies this maximum number of writes as
100,000 [19p. 3]. A procedure, called “wear leveling”, to distribute the writes
over as many cells as possible is desirable.

Data
retention

Over time, charge loss in cells cause the voltage levels in the cell to reach levels
where the state can no longer be determined. However, the cell itself is
undamaged. For this reason stored data must be read and rewritten periodically
to refresh the charge levels in the cells [20] [19].

Duplicate on
write and
garbage
collect

A single page cannot be completely rewritten without first erasing the whole
block it is located in. This requires the rest of the block to be temporarily read
into memory, and then after the block is erased all pages are rewritten, including
the new page. It is faster to write the new page to another previously erased block
and to copy the unchanged pages from the old block into this previously erased
block. The old block is flagged as “invalid” and in the background a garbage
collector process will later erase this block. [21p. 3]

To make NAND flash appear to be reliable we need bad block management, ECC correction, and
wear leveling. This functionality can be performed by the operating system using a file system
specifically designed for flash, such as JFFS2 or YAFFS [22p. 12]. However, new releases and types
of NAND flash may be less reliable (but cheaper) and these new flash memories require different
algorithms, such as stronger ECC. It is impractical to adjust file system drivers to accommodate all
of these changes, thus flash management functionality is increasingly handled by an embedded
hardware controller on the flash chip itself (resulting in what is called managed flash) or in a
separate customized controller chip [18]. Figure 2-1 shows where this flash management can be
placed.

Figure 2-1: Example location of flash management functions

Host
RAW

NAND
chip

Host

RAW
NAND
chip Flash

controller
chip RAW

NAND
chip Fi

le
 s

ys
te

m
 fo

r f
la

sh Managed
NAND chip

Fl
as

h
co

nt
ro

lle
rHost

USB stick etc.

Flash management in OS
by a specialized file system

Flash management by a controller chip Flash management by a
controller on the NAND chip

10 | Related work and useful technologies

The logic that makes a flash memory system look like a hard disk drive is called the Flash
Translation Layer (FTL). Wear leveling is achieved by presenting virtual addresses to the host that
are subsequently mapped into physical pages within the actual flash memory device by a translation
table. This translation table gives the flash controller the freedom to move data around inside the
flash memory and to administer the wear leveling, bad block management, and garbage collection.
[21p. 7]

Flash memory chips are commonly packaged on a pluggable memory card for easy handling*.
Most of these flash memory chips have a controller inside to perform flash management and to
provide one of the following host interfaces:

• CompactFlash,

• Solid-state drive (SSD),

• Secure Digital (SD) card,

• USB memory stick, or

• MultiMediaCard (MMC).

An exception to this approach are xD and SmartMedia which are controller-less and thus
provide direct access to the NAND chip inside without any wear leveling or address translations.

2.1.3.4 Erasing managed flash

Erasing managed flash from the host interface faces several challenges due to the FTL. Overwriting
the same address twice may not actually overwrite the old data if the wear leveling and FTL logic are
implemented correctly and efficiently – as this data will be written to new physical blocks and not to
the previous block(s). For this reason an SSD drive, which is a managed flash device with a
IDE/SATA host interface, has special interface commands to erase the storage media: ATA sanitize
commands “ERASE UNIT” and sometimes the more potent “ERASE UNIT ENHANCED”. The later
should erase the entire flash. However, can we trust the implementation to actually do this erasure?

The paper “Reliably Erasing Data From Flash-Based Solid State Drives” [23] investigates these
problems and arrives at some conclusions after testing 12 SSD drives:

• The SSD ATA “ERASE UNIT” command reported success in one drive, but left all data
intact.

• Degaussing (a procedure used to clear the magnetic fields of Hard Disk Drives) did not
erase any of the data in the flash chips.

• It is very difficult to ensure that a single file is erased from a managed flash because the
FTL usually does not keep track of which parts of the flash could have data related to a
logical/virtual address. Therefore, they propose additional logic for the FTL layer so
that pages in the flash chip related to a given logical/virtual address can be properly
erased.

2.1.3.5 Forensics of managed flash

Reading out data from a raw unmanaged flash is easy: For example, one can de-solder the chips and
place them in an external flash chip reader. However, because of the scrambling done by FTL in the
controller, it can be very tricky to assemble that data into something useful [21]. Some of the
problems are:

• If the controller spreads data to several flash chips, then this spreading needs to be
known in order to assemble the data correctly.

* Wikipedia has an overview of and photos of each type of card, see:
http://en.wikipedia.org/wiki/Comparison_of_memory_cards

http://en.wikipedia.org/wiki/Comparison_of_memory_cards

Related work and useful technologies | 11

• ECC data is interleaved in the raw data. At a minimum, the ECC data would be stripped
across the actual storage, but to accurately recover the stored data the ECC algorithm
and storage method must be known and understood. The vendor is free to choose the
ECC implementation, but there are two standard ways to store the ECC bits [21p. 6].

• Finding out which blocks are bad and unused.

• The FTL translation table and logic must be known and understood in order to fully
assemble a correct sequential data-stream as seen from the virtual/logical side.

Each manufacturer can implement their FTL logic and other transformations in a proprietary
and undocumented way (due to competitive trade secrets). Joshua White describes the many steps
of the reverse engineering process he used when trying to rescue his photos from an SD card [24].
Some sites offer flash chips reader and “recipes” on how to puzzle together the data from various
flash controllers and devices [25] [26].

2.1.3.6 Example of managed flash storage: CompactFlash

Here we look under the hood of a common router flash storage card. This flash storage card’s
primary use is to hold the executable Cisco Internet Operating System (IOS) file, but other files can
be stored on it as well (such as configuration files). Figure 2-2 shows such a Compact Flash card
taken from a CISCO1812 router. There are three main components: a Samsung Electronics
K9F5608U0D flash memory chip, a Hyperstone F2-L16XT flash controller, and a Unigen PCB. The
back of the PCB has solder pads for 3 additional flash chips. The exterior case is labeled as a Cisco
32 MB flash card. In the following paragraphs, we examine this flash chip and controller in greater
detail.

Figure 2-2: 32MB Compact Flash Card

2.1.3.6.1 NAND flash chip

According to the datasheet for the Samsung Electronics K9F5608U0D flash memory chip [19] the
flash ship is a 3.3 volt 32 MB NAND memory organized in pages each of 528 bytes (512 + 16 bytes).
There are 32 pages per block and 2048 blocks in total. It can endure 100,000 program/erase cycles
and data can be stored for 10 years. The chip is delivered from the factory in the all erased (0xFF)
state. A flag (a non 0xFF) byte set in the first or second pages of each block indicates that the block
is deemed bad by Samsung during their factory testing. Since the flags are written in the area used
to store normal data, it is up to the user (in this case a controller) to recognize these bad blocks and
save this bad block information in its own table prior to using the flash chip to store data. If these
bits are cleared (by erasing the block) there is no way to recover the original bad block list from the
chip itself.

The flash memory is erased at the block level by sending an “erase” command, the block
address, and a “confirm erase command”, then wait for about 2 ms and check the data Input/Output
(I/O) pins for an indication of success or failure.

12 | Related work and useful technologies

2.1.3.6.2 Flash controller chip

The Hyperstone F2-L16XT is a controller with a PCMCIA/Compact Flash and NAND flash driver. It
can control up to 10 NAND flash chips. According to its datasheet [27] it is an embedded system
containing:

• a 32-bit RISC Hyperstone E1-32X CPU, running at 20 or 40 MHz,

• a 8 Kbyte boot ROM (containing flash access helper routines), and

• 16 Kbyte RAM.

The firmware executed by this controller is stored in a section of the external flash chip it
controls. At power on, execution starts with ROM code which tries to locate the firmware in the first
attached NAND flash chip, then copies this firmware to the controller’s RAM and executes this
firmware.

The firmware can be written into the NAND chip prior to soldering it to the board. If the
firmware is not found in the first flash chip at boot, the controller will ask for new firmware via the
PCMCIA/CompactFlash. When the host sends this firmware it will be copied to the controller’s
RAM and executed. We will refer to this later process as PCMCIA boot. Note that this firmware
could program the first flash chip, i.e., install new firmware into the CompactFlash card.

If the “WE/service mode” and “WAIT” pins are held low during power on, then the controller
will perform a PCMCIA boot. The firmware provided by the host could do block erases of the flash
chip(s). However, if we erase the entire flash, then the firmware and data structures needed by the
controller are lost and would have to be restored to make the card useable again. Moreover, the bad
block list of the NAND chip would be lost, so the card would have to be retested. Note that the
firmware loaded via the PCMCIA boot need not erase any of the flash contents; hence, all of the
previous firmware and bad block list are retained. If the firmware loaded via the PCMCIA boot
knows where to find the bad block list and the allocated/free blocks list (depending upon the
organization of the block allocation), then this firmware could erase all of the blocks, clear the
allocated block list, place all of the non-bad blocks in the free list, and re-create the bad block list;
thus returning the device back to the state it would have been in after testing (modulo the fact that
more blocks may be in the bad block list due to failures detected while the flash memory has been in
use).

The controller datasheet does not mention any security measures that would prevent loading
new firmware. As a result, we could boot our own firmware supplied from the
PCMCIA/CompactFlash interface and once executing in the controller CPU we can permanently
overwrite the existing firmware in the NAND flash so it survives a reboot. This could be prevented if
the NAND area containing the original firmware was write-protected. Some NAND devices offer
block protection functionality [22p. 25], but there is no such feature in the K9F5608U0D-PCB0
used in this compact flash [19]. A similar firmware rewrite of a SD card was shown at the Chaos
Computer Congress in 2013 [18].

It is important to note that the host does not have direct access to the NAND chips itself; hence
all access is mediated by the controller. The controller starts to execute as soon as it gets power and
the controller’s CPU can do a lot of operations – even while the host interface is idle (for example,
the CPU can perform garbage collection and other management tasks). Here are some examples of
what malicious firmware in the card could potentially do:

• Scan the files to determine which host the CompactFlash card is in.

• If the host asks for a configuration file, the controller could change it on the fly to
bypass the security of the embedded system, i.e. it could change passwords, crypto keys,
firewall rules, etc.

• It could compress data stored in the flash in order to make room for hidden storage,
while decompressing this data on the fly when the data is requested by the host.

• Scan the stored data for interesting information, such as password and crypto keys, and
copy them to hidden storage.

Related work and useful technologies | 13

• Get occasional indirect access to host RAM contents - if the host uses the flash card for a
virtual memory page file, debug core file, or hibernation file.

• If the host reboots, the controller could deliver an alternative maliciously crafted boot
file or boot script which could in turn initialize the network ports and send out data (for
example, the hidden data stored by the card).

• If the host tries to erase the flash by sending a predictable erase pattern (such as a series
of zeros or ones) it can try to interpret this stream, but maintain the data stored in the
NAND chip unchanged. Subsequently when the host wants to verify the erase the
controller can regenerate the stream in order to satisfy the host. As a result, from the
host side it would appear as everything was erased, but in fact not a single bit was
modified.

The controller could be commanded by the host to perform a PCMCIA-boot in order to load
custom test firmware capable of checking for potentially malicious firmware stored in the NAND
flash. Alternatively, at PCMCIA boot firmware could be installed in RAM which sends back to the
host the firmware stored in NAND for verification. Both methods are safe since they only execute
the ROM boot code and the test code, but do not execute any potentially unsafe firmware stored in
the flash.

We could also de solder the NAND chip, put it in an external flash reader and verify the portion
of this storage that contains the firmware, but this could potentially destroy the card or cause it to
look like the card shown in Figure 2-2.

2.1.3.7 Example of unmanaged flash storage: linear PCMCIA Flash card

The card shown in Figure 2-3 and Figure 2-4 is a 4 MB PCMCIA linear flash card from a
CISCO 1601 router.

Figure 2-3: PCMCIA Linear Flash (external view)

Figure 2-4: PCMCIA Linear Flash (internal view)

14 | Related work and useful technologies

The chips inside this card are:

• Two AMD/Spansion AM29F016B 2 MB NOR flash chips. The data access to these
chips is “memory”-like, i.e., with address and 8 bit parallel data lines.

• One ATMEL AT28C16 a 2 KB EEPROM [28]. This EEPROM chip probably stores
information about the card type and size using a so-called PCMCIA “Card information
Structure” [29p. 15].

• Two Texas Instruments SN74AHCT138DBR 3-line to 8-line decoder/demultiplexers.
These chips probably do some address translation between the PCMCIA and flash chips.

PCMCIA linear flash access is similar to accessing a RAM with an address and data bus [30p.
15]. A host such as the CISCO 1601 can map the flash into its memory space and directly execute
software from it. Since there is no controller and thus no FTL, this type of flash card should be
easier to erase from the host-side than one with an embedded memory controller.

2.2 Methods to inspect and erase nonvolatile memory

This section will present methods and tools for erasing and inspecting nonvolatile memory useful to
the investigate section of the paper.

 Vendor’s erase procedure 2.2.1

Each vendor typically recommends methods for erasing sensitive data. These could potentially
involve one or more of the following procedures:

• Executing commands via a command line interface (using a serial interface or
ssh/telnet),

• Pushing buttons during the device’s boot sequence,

• Removing a NVRAM’s battery,

• Shorting a jumper on the logic board, and/or

• Loading a default configuration from a Trivial File Transfer Protocol (TFTP) server.

This procedure is generally documented in vendor provided user guides or technical notes.
Appendix A has a list of erase procedures taken from various vendors’ documentation.

 Configuration overwrite 2.2.2

One means to erase the device’s existing configuration information is to create a new configuration
that will overwrite every sensitive configuration parameter by using a vendor supplied management
interface. For example, if a (sensitive) SNMP password string is currently set, then the web interface
could be used to set this password string to another new (non-sensitive) string. The length of the
new string should be sufficiently long to completely overwrite the previous password - if this
password is written to the same place in memory. For example, if the configuration parameters are
stored at fixed offsets in direct access memory (i.e., without an FTL layer) in an EEPROM. Note that
after overwriting the password string, one might also overwrite this with the vendor’s default value
for this password.

 Delete and overwrite free space 2.2.3

If we do not have direct access to the storage and suspect, or know, that the vendor supplied erase
methods leave data in unallocated parts of a file system we can attempt to ensure that as much of
the accessible storage is overwritten by filling the unallocated space with new data. This data can be
provided by any interface offered by the device, including (but not limited to the following): TFTP,
Xmodem, Text transfer via the console interface, Duplicating an existing file, or File upload via a
web interface.

Related work and useful technologies | 15

This data should be sufficiently random that a compressed file system cannot reduce its size.
Additionally, the data should be read back and verified (if possible) to ensure that the replacement
data was actually stored. When a device cannot be queried in advance to determine how much free
space is available and the device simply reports if the write was successful or not, we could use the
following algorithm to efficiently fill up the remaining empty space by transferring multiple files:

Algorithm 2-1: Free space overwrite with multiple files
Start with a file size F [bytes] approximated to half of the flash memory raw
size (which can be determined form the datasheet)

While F > 0

 Transfer a new file of size F to the device

 If not successful set F = F / 2

End while

If new file transfers delete the last transfer (e.g., the file system can only hold one more file) we
can do a binary interval search to find the file size F which fills the free space. In the general case we
have to assume the file size can be anywhere from zero to the storage capacity of the memory. Any
prior knowledge about the file system and block size will reduce the number of sizes to be tried.

Algorithm 2-2: Free space overwrite with one file
F = about half the size of the flash device chip size

While (Transfer a new file of size F is successful)

 F = F*2

End while

HIGH = F ;this now is the upper boundary for the search interval

LOW = 0

While (HIGH – LOW > 1)

 F = (HIGH + LOW)/2

 If (Transfer a new file of size F to the device)

 LOW = F

 Else

 HIGH = F

End while

Both algorithms could be improved so the final size which matched the free spaced is
remembered and used as start value for F the next time a similar device is to be erased.

 JTAG 2.2.4

IEEE standard 1149.1 was developed by the Joint Test Action Group (commonly called JTAG). This
standard defines a protocol for controlling integrated circuits (ICs) on a circuit board[31]. Each
JTAG compatible IC has extra logic built-in to handle the JTAG protocol. The initial purpose was to
provide an interface to set and read the state of IC pins for debugging and troubleshooting systems.
The continuity of the paths on the circuit board itself can be tested by driving an output signal on
one pin of a chip and reading it at the corresponding pin at the other end of the path.

Today, IC vendors support JTAG as a method to control internal functions, read and write data
to internal memories, and to control debugging / execution of a CPU.

A JTAG enabled device has 4 mandatory electrical signals. This set of signals are referred to as
the Test Access Port (TAP) and consists of:

16 | Related work and useful technologies

• Test Data In (TDI),

• Test Data Out (TDO),

• Test Clock (TCK), and

• Test Mode Select (TMS).

There is often an optional 5th signal called Test Reset (TRST). The IEEE 1149.7 standard defines
a two wire interface consisting of TCK and Test Serial Data (TMSC) [32].

The TAP interface can be connected to an IC via physical pins or an internal part of or a sub-
blocks/function inside of an IC. The data I/O is serial and clocked in and out of the system by TCK.
TAPs can be daisy chained so the TDO of one TAP is connected to the TDI of the next. Figure 2-5
shows how to connect multiple JTAG capable devices together into a JTAG chain. The last TDO is
connected to the JTAG interface of the host. Here the host is the device connected to the TAP, it can
be a separate host that is used for programming & debugging or it might even be the device itself (so
that it can dynamically change its own functionality).

Figure 2-5: JTAG daisy chain, inspired by Figure 4.1 in the JTAG specification [32]

Each JTAG enabled device typically has an instruction register and several data registers. By
manipulating the TMS (and the clock) the device state can be configured to receive an instruction.
For each instruction, there is a corresponding data register that can be read or written to. A JTAG
device must implement a set of mandatory instructions to allow control of its pins, referred to as the
boundary scan. Figure 2-6 shows the TAP interface and the internal registers [33].

The JTAG specification allows an unknown device chain to be probed by reading the IDCODE
data register of each device. The JTAG capabilities of an IC are documented in a Boundary Scan

TDI TDO

 TMS TCK

TDI TDO

 TMS TCK

TDI TDO

 TMS TCK

TDI TDO

 TMS TCK

 1001110 TDI

TMS

TCK

TDO 11100

Figure 2-6: IC with JTAG TAP interface. From http://www.xjtag.com

Related work and useful technologies | 17

Description Language (BSDL) file. Unfortunately, not all manufacturers make a BSDL file generally
available for each of their devices.

The JTAG interface is a powerful way to read and write to memories of embedded devices.
Unfortunately, few commercial embedded devices make any documentation for their JTAG
interface or board schematics available, therefore using the JTAG interface together with these
devices require some reverse engineering or the cooperation of the manufacturer/vendor.

2.2.4.1.1 Locating the JTAG pins

JTAG is commonly used during the development phase of a product or for troubleshooting and
repairs. However, it is rarely intended to be used by anyone other than the manufacturer (or
vendor). The final release of a board might not even have a header to connect to the JTAG lines,
thus making it necessary to add a header by soldering one on. Even more troubling is that the JTAG
lines may be placed in an awkward position, i.e., it may be hard to access without removing
daughter boards, expansion cards, etc. In some cases, it is possible to use a sticky adhesive to attach
conductors to the pads, thus avoiding the need to solder on a new connector to temporarily connect
wires to the surface soldering pads. When boards are being manufactured a “bed of nails” or special
fixtures are often used to connect to the board for testing and loading code and data into the board
[34].

Unfortunately, there is no standard JTAG connector or pinout. However, there are at least three
common alternatives:

• Look for pads arranged as would be used for a 2.54 mm spacing: 2x10, 2x7, 2x5, or 8x1
header or a MIPI Alliance, Inc. MIPI10/20/34 debug connector. Sometimes there will even
be a JTAG label on the silkscreen layer of the circuit board.

• CPU manufacturers normally offer JTAG debugging hardware to developers and thus there
are some established standard CPU family pinouts. A collection of these can be found at
http://www.jtagtest.com/pinouts/ [35].

• Locate a JTAG enabled IC on the board (such as a CPU). Find its JTAG pins via its
datasheet and try to trace the connections to these pins to a connector*. Today most CPUs
have their connectors underneath (i.e., the CPU is connected to the PCB via a ball grid
array, BGA) and the chip has to be de-soldered for access. This de-soldering can be easily
done using a US$50 hot air gun, but putting the chip back is time consuming and requires
an expensive BGA soldering station. As a result this approach is only realistic if a unit can be
sacrificed to explore the JTAG pinout.

• Use a specialized tool which can probe a large number of pins (15-30) believed to include
the JTAG pins. An example of such a tool is the JTAGulator [36].

2.2.4.1.2 Accessing nonvolatile memory with JTAG

If the memory of interest is in the JTAG chain, we can read or write to it using the supported
instructions in its Boundary Scan Description Language (BSDL) file or documentation. Memory
devices that are not part of a JTAG chain can still be manipulated indirectly by controlling the CPU
via JTAG. The CPU certainly has access to the memory containing the configuration information
(otherwise, it could not load a configuration).

In the article “Forensic imaging of embedded systems using JTAG (boundary-scan)” [37], M. F.
Breeuwsma proposes two methods to interact with memory devices controlled by the CPU: “Extest
mode” and “Debug mode”.

• In Extest mode the CPU is put into Boundary Scan mode to control its pins interfacing
with the memory of interest. Data is read by driving the signals on the address bus, then

* This is typically done by using a continuity check – i. e., looking for a low resistance path from the pins to a
potential connector.

http://www.jtagtest.com/pinouts/

18 | Related work and useful technologies

waiting for the memory to present the data on the data bus, and then reading out the
value presented on the data pins of the CPU. This method controls the physical memory
directly, thus any Memory Management Unit (MMU) inside the CPU is bypassed.

The commercial tool XJTAG (see section 2.2.4.1.3) comes with scripts to program flash
memory through driving the pins of a JTAG compatible CPU [38].

• In Debug mode, the CPU execution is stopped and instructions to read or write the
memory are fed into the instruction pipeline. As we are executing instructions in the
CPU, the addresses might be translated by an MMU if present and enabled.

The article by M. F. Breeuwsma also address some problems such as watch dog timeouts,
refresh of Synchronous Dynamic Random-Access Memory SDRAM, and how to prevent interfering
with other hardware during Extest mode.

2.2.4.1.3 JTAG hardware and software tools

There are a number of JTAG hardware and software tools. Some examples of these tools are:

• JTAGulator [36] is a hardware tool aiding in locating the 5 JTAG pins from a set of
unknown pins. It is an embedded system controlled via an RS-232 over USB interface.
The controller has 24 general purpose I/O pins which are connected to the group of pins
that may include the JTAG pins.

• USBJTAG NT (www.usbjtag.com) is a low cost hardware JTAG interface bundled with
graphical and command line software for Windows, Linux, and Apple’s MAC OS. It is
used to interface to MIPS based CPUs According to the manual [39] it can read and write
flash and scan memory ranges. It uses the MIPS EJTAG protocol which is electrically
equivalent to JTAG, but has extensions to control the CPU [40].

• XJTAG (www.xjtag.com) offers commercial JTAG controllers, software, and scripts to
access memories by boundary scanning CPUs.

• OpenOCD (openocd.sourceforge.net) is an open source software package for
debugging, in-system programming, and boundary scan testing. OpenOCD can be used
with many different hardware JTAG adapters [41]. It has support for reading and writing
to NOR flash and some NAND flash controllers, as well as debugging some ARM CPUs.
[42p. 1]. The user interface is command line based. Scripting is done using Tool
Command Language (TCL). A function called “autoprobe” reads out the IDCODE entries
for every device in an unknown scan chain. Support for boundary scans seems limited,
but there is a user TCL script add on that can help [43].

 Other debug interfaces 2.2.5

There are a number of other debugging interfaces. For example, Freescale Semiconductor’s CPUs
have a Background debug mode (BDM) with an in-circuit debugging interface.

Additionally, the target system may have a monitor with debugging capabilities built in into its
bootstrap program. An example is Cisco’s Rommon that has commands to inspect and modify
memory. Some versions of Rommon have a hidden command set with additional debugging
functionality which can be activated by calculating a challenge password. The hidden Rommon
commands can show how the storage devices are mapped into physical memory [44].

 Custom software method 2.2.6

Another approach to access non-volatile storage is to write a custom program to execute in the CPU
of the device of interest to inspect and erase storage media. Software executing in the CPU will have
complete control of the device’s memory space and can access the non-violate storage in the same
way as the vendor’s software can. Although proprietary embedded systems utilize standard
components, it can be difficult to write software which will run on these device. Several problems
exist:

http://www.usbjtag.com/
http://www.xjtag.com/
http://openocd.sourceforge.net/

Related work and useful technologies | 19

• The device could require software to be signed by specific keys before executing it.

• Documentation for developing software for the device is typically not public; hence,
developing code for a given device may require a lot of reverse engineering.

• Legal restrictions may prevent reverse engineering the vendor’s code and require that
any new custom code be approved by the vendor.[45]

• Accessing memory mapped into the address/data bus such as an EEPROM would be
quite easy, but other devices such as managed NAND flash might need special methods
to control it, i.e. a device driver.

In order to apply this approach it is necessary to know at least the following about the target
device in order to write custom software:

• CPU architecture,

• how and where storage devices are mapped into memory,

• binary format accepted by a boot-loader (compression, checksums),

• a method of transferring the executable file to the device, and

• driver logic to interface to a control port (such as an RS-232, USB, or network port) in
order to see what is going on.

Some prior work has already done to make custom software for commercial embedded network
systems. Some examples of this are:

• a version of Linux (ucLinux) has been ported to a CISCO 2500 series router [46],

• a lot of custom firmware has been developed for the Linksys WRT-54GL wireless router
(after the source code had to be released to the public to comply with GNU
licensing)[47], and

• the site http://www.linux-mips.org/wiki/Cisco has information about CPUs used in
various Cisco devices, the binary format, as well as a link to a “Hello World” program
source code for the CISCO 3600 router series[48].

 Hidden debugging console ports 2.2.7

Some embedded network devices, such as the Linksys E-1000, do not present a serial console to the
user. For this device all configuration is performed via an Ethernet port (using either a web interface
or telnet/ssh console). If the password or IP address is lost a push button restores a default factory
configuration with a known IP address and passwords settings [49]. IP telephones frequently work
in the same way, as they can be configured via the keypad or via network at boot time (typically
using a combination of DHCP with vendor extensions and TFTP access to boot & configuration
files).

Many of these devices have an internal serial console port for debugging, troubleshooting, and
system setup by the manufacturer. However, as this interface was not intended to be accessed by the
user no serial connector is available outside chassis and in many cases there is no connector on the
PCB. Finding this port could provide an alternative means to investigate and erase the device’s
sensitive configuration information. Jonathan Claudius describes a procedure for finding and
connecting to such a port on the PCB in his article “Getting Terminal Access to a Cisco Linksys
E-1000” [50].

It is possible to automate the search for the serial console transmit and receive lines and the bit
rate used, among an unknown set of pins by using specialized hardware. The JTAGulator can
identify changing serial pins at transistor-transistor logic (TTL) levels [36]. Another Arduino based
tool, RS232Enum, does a similar job [51]. A RS-232 line driver chip, such as the MAX232 [52], can
be used to convert between TTL and RS-232 signal levels.

http://www.linux-mips.org/wiki/Cisco

20 | Related work and useful technologies

 External memory reader / programmer 2.2.8

Flash and EEPROM chips can be read and programmed in a device called a “programmer”. The
unsoldered IC is placed into a custom socket that connects the programmer to the IC’s pins. The
programmer provides power to the chip and comes with custom computer software to read, write,
and erase many different vendors’ chips.

Table 2-2 shows a sampling of the flash and EEPROM devices used in some common embedded
systems.

Table 2-2: Flash and EEPROM ICs in some selected embeded systems

Device Manufacturer Vendor part# Form
Factor [53]

Netscreen (Juniper) NS-5XP-105 firewall AMD am29dl323dt TSOP48
CISCO 1812 router AMD am29lv160DB TSOP48
CISCO 32MB compact flash#1 from 1812 Samsung K9F5608U0D TSOP48
CISCO 32MB compact flash#2 from 1812 Samsung K9F1G08U0B TSOP48
CISCO CP7911 IP phone Spansion S29GL128N10TF102 TSOP56
CISCO WS-C2924-XL-EN switch Intel DA28F320J5 SSOP56
CISCO WS-C2960-24-TT-L switch Spansion S29GL256P11TA101 TSOP56
HP J9085A, 2610-24 switch STI M29W128GH TSOP56
CISCO2610 router Sharp LH28F008SAT-85 TSOP40
CISCO2611XM router Intel E28F640 TSOP56
CISCO2610 NVRAM CSI CAT28C256 PLCC32
CISCO AIR-LAP1131AG-2-K9 Flash Intel 128J3D FBGA64
CISCO AIR-LAP1131AG-2-K9 EEPROM CSI 24C08W1 SOIC8

A low end programmer such as the True-USB PRO GQ-4X Willem Programmer [54] is
inexpensive (around US$100 without adapters], but does not support TSOP56. A high end
programmer that also supports TSOP56 packages is the Xeltek SuperPro 6100 (around US$2000
without adapters) [55].

Some test clips exist that allow a chip to be read and programmed while soldered on a board, see
for example [56]. Jeong Wook made his own external NAND flash reader and content decoder [57].

2.3 Previous work and useful information

This section summarizes some useful related work performed by others.

 U.S. National Institute of Standards and Technology (NIST) 2.3.1

The draft NIST Special Publication 800-88 Revision 1 “Guidelines for Media Sanitization” defines
three actions/levels to perform sanitization on media in general ([58] page 8):

CLEAR Rewrite or if rewriting is not possible, then use the vendor’s factory reset
routines.

PURGE Use a sanitization technique that makes data recovery infeasible.

DESTROY Similar to PURGE, but with the addition that the media cannot be reused.

Table A-2 on page 26 of [58] gives advice on Networking Device Sanitization, by stating that
PURGE on networking devices should be used with caution, hence they recommend using

Related work and useful technologies | 21

DESTROY instead. However, as noted in Chapter 1 of this thesis, this is incompatible with the EU’s
WEE Directive.

 Analog data remenance of Hard Disk Drives 2.3.2

Peter Gutmann describes data remenance on magnetic media (such as disk drives) in [59]. This
problem occurs because on a hard disk binary data is encoded by using different analog levels of
magnetization following a circular path on the disk(s). He proposes two ways of recovering data:

• When writing to a position on the disk the new analog value will be a mix of the new
value and the old. By reading back the analog data with a sensitive read head the old data
can be reconstructed.

• The second recovery method uses the fact that the write head is not always perfectly
aligned to the center of the track, thus information might still be present along the sides
of the track. Thus, it may be possible to read this data back by purposely shifting the
head to the side of the track.

Gutmann further proposes overwrite patterns optimized for various types of magnetic
encodings to minimize data remenance.

 Embedded system analysis 2.3.3

The paper “Blackbox JTAG Reverse Engineering” by Felix Domke [60] proposes methods to explore
the JTAG interface for an undocumented device. The process he describes is:

1. Locate the JTAG pins.

2. Measure the Instruction Register (IR) length (by a proposed method)

3. Iterate over the IR and for each of the data registers (DR) determine their characteristics
(such as their length and if data are consistent during several reads). Those characteristics
could be a clue to the DR’s purpose. For example, a very long DR could be a boundary scan
register, a zero length register is probably a command issued by just addressing it, etc.

Nathan Fain and Vadik’s presentation “JTAG/Serial/FLASH/PCB Embedded Reverse
Engineering Tools and Techniques”* at the 27th Chaos Communications Congress discusses tools to
interact with an undocumented embeded system [61] [62]. They present an Arduino based JTAG
Pin scanner and instruction probe.

 Cisco flash file systems 2.3.4

Cisco uses use, at least, three different flash file systems, referred to a Class A, B, and C [63]. Linear
(unmanaged) flash storage is mounted with a “Slot[x]:” device designator, while ATA disks are
mounted as “disk[x]:”.Table 2-3 summarizes the different properties of these three file systems.

* http://events.ccc.de/congress/2010/Fahrplan/events/4011.en.html

http://events.ccc.de/congress/2010/Fahrplan/events/4011.en.html

22 | Related work and useful technologies

Table 2-3: Cisco's Class A, B, and C flash file systems [63]

Class A Delete command simply marks the file as deleted.
Undelete recovers files marked for deletion.
Squeeze command permanently erases files marked for deletion by rewriting the whole
flash.
Format command erases all files.

Class B Delete command simply marks the file as deleted.
Erase command erases all flash
Partition command splits the flash into several file systems

Class C Delete command simply marks the file as deleted.
Squeeze command permanently erases files marked for deletion by rewriting the whole
flash.
Format command erases all files.

 Cisco boot sequence and configuration 2.3.5

There is large variety of Cisco network devices, but a very common boot sequence is as follows. A
small bootstrap software, called Rommon, starts. Its primary job is to look in the flash for a file to
boot. The boot process can be interrupted via the device’s terminal interface by sending an RS-232
break signal (for routers) or pushing the mode button on the front of switches, after which the user
ends up in a preboot state. In this state system environmental variables can be set to control how
and where to boot the IOS file and whether the startup configuration should be loaded or not during
boot. The startup configuration is stored in nonvolatile memory and normally loaded into RAM
during boot and called the “running configuration”. Configurations stored in RAM are called the
running-config and have to be explicitly copied to nonvolatile storage (often referred to as NVRAM
in Cisco’s documentation) in order to survive a reboot.

Once the system has booted a user can login. Now the user is presented with a Command Line
Interface (CLI) with limited functionality called the “User EXEC mode”. After entering the
command “enable” and possibly a password (if an enable password is set) the user enters the
“Privileged EXEC Mode” which gives access to all system commands, including making
configuration changes.[64]

 Cryptographic Erase 2.3.6

If all data on a storage device is encrypted and the encryption key is erased, then the plain text data
is unrecoverable and thus can be considered to be erased. Therefore, as long as the encryption
method is strong and the key cannot be recovered from the device, then simply erasing the key
effectively and efficiently makes the data on the storage device inaccessible.

The encryption/decryption mechanism can be implemented in the host OS or in the device’s
own controller. Today’s SATA drives often implement the Trusted Computing Group’s OPAL and
Enterprise standards. This enables the host to issue a Cryptographic Disk Erasure command that
erases the key from the drive by generating a new key and overwriting the previous key and setting
the drive into the “new drive” state [65].

A benefit of cryptographic erase is its high speed. Overwriting a hard disk drive (HDD)
containing many terabytes of data with several different patterns can take hours. In comparison,
erasing the crypto key is very quick (i.e., of the order of a few milliseconds). However, a problem
remains: Can we be certain that the cryptographic key is permanently erased and that it not possible
to retrieve this key from the disk controller’s RAM or CPU registers? This problem is addressed in
the paper “SAFE: Fast, Verifiable Sanitization for SSDs” [66], where Swanson and Wei propose a
solution where the crypto key erasure is followed by a new unencrypted state in which the storage
media itself can be overwritten and verified.

 Research methods | 23

3 Research methods

How could we determine if a device still has sensitive data in its nonvolatile memories after a
configuration is erased? Data in each memory can be inspected using the tools described in Chapter
2. By inspection, we can see if the nonvolatile memory contains some specific strings or patterns
that might occur in a configuration. If we find a string “pass” in 256 MB of storage can we conclude
that this string is from the configuration or could it appear randomly? This chapter:

1. Proposes a method to generate good markers to be used as parameters for such an
inspection.

2. Shows how to calculate the probability of an accidental match in the data being searched.
The chapter defines the concept of “marker strength” as the complement of this probability.
Appendix I further discusses the strength of a marker.

The procedure described in Table 3-1 will be used to investigate if sensitive data can be recovered
after an erase procedure is performed on a device. The research methodology used is qualitative as
each test will deliver an outcome which is either “unsafe” or “unknown”. There is no numerical data
to process for a quantitative analysis.

Table 3-1: Procedure for testing erase procedure

FOR EACH {DEVICE, PROPOSED_ERASE_PROCEDURE}

1. Generate a set of random data to be used as markers.

2. Configure some sensitive data on the DEVICE using each marker (only
once). This data includes: SNMP passwords, Wi-Fi keys, passwords, etc.

3. Save the configuration.

4. Erase the configuration using the specified PROPOSED_ERASE_PROCEDURE

5. Power off.
6. Perform memory recovery and marker search

7. If any of the markers can be found somewhere in the retrieved data, this
particular PROPOSED_ERASE_PROCEDURE on the DEVICE can be declared unsafe.
At least within the certainty of the marker strength.

3.1 Device platform and erase procedure to be tested

In Table 3-1 a DEVICE is a particular combination of hardware and software, while an
ERASE_PROCEDURE is the procedure by which the configuration is to be erased. This procedure
may include CLI command(s) according to manufacturer’s instructions, toggling a dual in-line
package (DIP) switch, pushing a reset button, removing the NVRAM battery, etc.

3.2 Marker generation and the risk for a false positive

Each marker must be constructed so that it complies with the configuration parameter’s format. For
example, an alphanumeric string would be suitable for passwords, an IPV4 address would be 4
bytes, an Ethernet MAC address 6 bytes, etc. It is important to construct sufficiently long and
unique markers that the chance of finding them by accident in a large string of data is negligible.
That is we want to minimize the risk of false positives.

Figure 3-1: Data and marker sequences

24 | Research methods

Data: ? ? ? ? M M M M M M ? ? … ? ? ? ? ? ? ? ? ? ? ? ?
 ���

D bytes

Marker: M M M M M M

 �������������
L bytes

In this analysis of marker strength I will assume that random marker of a single byte has the
probability 2-8 to match any other byte (for further detailed discussion of this simplifying
assumption see Appendix I).

A marker with length of L bytes can overlay data of D bytes in D-L+1 ways. Or differently said
there are D-L+1 substrings of length L in a string of length D. We can generalize this to compute the
probability of finding a random marker of length L bytes by accident in a data string of length D as
the complementary probability of not finding it at any of the possible overlays/substrings within the
file:

𝑝 = 1 − �1 − 1
256𝐿

�
𝐷−𝐿+1

In our case D is much larger than L, hence the above probability can be approximated as:

𝑝 = 1 − �1 − 1
256𝐿

�
𝐷

The value �1 − 1
256𝐿

� will be very close to 1 for large L, and the probability p above will be
difficult to calculate with computer software such as Excel because of the limited precision in the
floating point number representations [67]. As an example, Excel calculates this probability as
exactly 1 for L≥7. Fortunately, the value of this expression can be approximated using the definition
for the mathematical constant e [68p. 131] as:

𝑝 = 1 − �1 − 1
𝑛𝐿
�
𝐷

= 1 − �1 − 1
𝑛𝐿
�
𝑛𝐿 𝐷𝐿 ≈ �𝐹𝐹𝐹 𝑏𝑏𝑏 𝑛𝐿 𝑤𝑤 𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �1 − 1

𝑛𝐿
�
𝑛𝐿
≈ 𝑒−𝑛𝐿� ≈

= 1 − 𝑒− 𝐷
𝑛𝐿

Table 3-2: Marker probability examples

Example Marker
length
[bytes]

Data to search
[bytes]

Probability of
accidental match

IPv4 address in one megabyte 4 1MB = 220 0.024%

IPv4 address in one gigabyte 4 1GB =230 22%

MAC address in one gigabyte 6 1GB =230 0.00038%

MAC address in one terabyte 6 1GB =240 0.39%

From the above we can see that the probability of finding any given IPv4 address in a gigabyte of
random data is over 20%. The devices this thesis aim to investigate could potentially have 1 GB of
data to search. As such, IPv4 markers should be avoided if possible. Or, if used, then the result
should at least have a note explaining the probability of an accidental match. A random MAC

Research methods | 25

address marker on the other hand is very unlikely to be found in 1 GB of data, hence it would be a
good strength marker.

To avoid problems with unsupported characters in passwords, only alphabetic characters in the
range [a-z] and [A-Z] will be used. If these strings are stored as one character per byte, there are 52
combinations per every byte position. If the data searched contains an “equivalent alphabet” of
character as the marker characters, then the probability of an accidental match is:

Equation 3-1

𝑝 = 1 − �1 − 1
52𝐿
�
𝐷−𝐿+1

≈ 1 − 𝑒− 𝐷
52𝐿

With “equivalent alphabet” is meant the marker and the data share the exact same characters. E.g. if
the marker is the 52 characters in the set [a-z] and [A-Z] then the data must not contain any other
symbol for Equation 3-1 to hold.

But what if the marker and data do not share the same alphabet? E.g. the marker may be composed
of the 52 character set but the data could be any byte value 0x00 to 0xff? In Appendix I it will be
shown that Equation 3-1 still holds as an upper limit of an accidental match between a random
marker and any data.

Table 3-3: Probability of finding random character strings in a random text
Example Marker

length
[chars]

Text to search
[bytes]

Maximum
probabilityof

accidental match
4 chars in one kilobyte 4 103 1.4⨯ 10-6

8 char string in one megabyte 8 106 1.9⨯ 10-6

8 char string in one gigabyte 8 109 1.8⨯ 10-5

8 char string in one terabyte 8 1012 1.9 ⨯ 10-2

10 char string in one terabyte 10 1012 6.9 ⨯ 10-6

Conclusion: 10 character markers will be sufficiently long enough to rule out an accidental
collision in the amount data we will be looking at, when looking for passwords, SNMP community
strings, etc.

We define the quantity marker strength to be the complementary of the maximum probability
to find the marker by accident. For example, the marker strength of the marker “8 char random
string in one terabyte” would be 1-0.019 = 0.981 = 98.1% with reference to Table 3-3.

Based upon my study of white noise versus contrasting markers (See Appendix I, Appendix J,
and Appendix K), I conclude that the benefits of using contrasting markers are outweighed by the
simplicity of the white noise marker. Hence, I will use white noise markers for my investigations
and in the computations of marker strength. To make searching for markers easier for humans (and
to facilitate the examples in this thesis) each string marker will be prefixed by the string “MARK”.
The marker strength increases due to the addition of these 4 extra characters, but since they are
non-random, we cannot calculate the extra strength it adds without knowledge of the character
probability distribution of the data the marker is placed in. Therefore, the marker prefix will not be
included when calculating and evaluating the strength. Appendix B contains the Excel function used
to generate the string markers .

3.3 Configuration and marker injection

When testing a device some selected sensitive parameters of the device will be set using the method
that it is normally used for configuring the device, e.g., through a console terminal or web interface.

26 | Research methods

To prevent marker contamination between tests, each marker will only be used once for a given
combination of device, erase-test, and parameter. The marked configuration will be saved to
nonvolatile storage following the vendor’s standard platform specific procedure. If configuration
backup or archiving is available as a device feature or common technician’s practice, then different
sets of markers will be used for the current and backup/archive configuration so that we can
distinguish which of the configuration sets a marker originated from when a marker is found.

3.4 Configuration erasure

The erasure part of the test will try each of the different methods of erasure offered by the device.
Each erase attempt will be followed by the recovery step to see if the erasure was successful or not.
The primarily erase procedures that will be tested are those described in the device vendor’s
recommendations. If all of these procedures prove to be unreliable, then an improved erasure
method will be suggested and tested using the same procedure.

A single erasure method may involve several steps and sub methods. Typically, there is a
power-off step as part of the erase procedure. There may be a difference between whether the device
is powered off by physically removing all sources of power and when the device is simply powered
off with a command. A “power-off” command gives the device an opportunity to store some
configuration data from volatile RAM into non-volatile storage, where it can be retrieved later. For
this reason, it will be important to ensure that both methods of powering off the device are tested,
thus a computer controlled power strip would be a useful tool to use during this testing.

3.5 Memory recovery and marker search

This step aims to recover as much non-volatile memory data as possible, and then the recovered
data is searched for the previously set markers. Several methods of recovering data will be used,
especially those discussed in Chapter 2.

The markers will be searched for in the data and when a marker is found we can conclude that
the erase procedure used on this device does not erase this item of sensitive information and thus
the erase procedure is unsafe. Note that it is relatively easy to determine if a method is unsafe. We
simply need to prove a single exception. However, proving the opposite is very hard; hence, if the
markers are not found we can only be certain of one thing: the erase procedure of this device is safe
for the specific parameters tested while using the tested recovery procedures. There will always be
some probability there exists or will exist a method able to recover sensitive data.

Unfortunately (for our testing), many devices perform a hash before storing passwords –so that
the plain text of the password cannot be recovered, but the password can be verified by matching
the hash with a stored hash. For this reason, we may need to use the CLI or other interface to learn
the hashed form of passwords – so that we can search for these strings. Note that some equipment
has defined procedures for recovering passwords, see for example the note “Note: Unlike other
Cisco platforms, the Aironet hardware and software do not allow password recovery. You must
instead return the equipment to its default state, from which it can be reconfigured.” in Cisco’s
Aironet 1200 Series AP document “Password Recovery Procedure for Cisco Aironet Equipment”
[69].

 Investigation of sanitization completeness | 27

4 Investigation of sanitization completeness

This chapter investigates the sanitization of a Cisco router and 3 HP Procurve switches. Memory
investigation methods discussed in Chapter 2 are used as well as the marker injection technique
from Chapter 3.

4.1 Sanitization of the Cisco 1712 router

This section will investigate the CISCO 1712 router. The full part number of the specific device that
has been examined is CISCO1712-VPN/K9. First, we will examine the hardware to locate its
nonvolatile memories. Next we try to apply methods from Chapter 3 to read and write to each of
them. Finally, we will check how well the vendor recommended methods erase the sensitive
information.

 Router overview and exterior interfaces 4.1.1

Cisco’s describes the CISCO 1712 router as [70]:

“The Cisco 1712 Security Access Router offers an all-in-one security, routing, and switching solution for
enterprise small branch offices and small and medium sized businesses; with built-in Fast Ethernet LAN
switching, Fast Ethernet port for DSL or broadband modem connectivity, integrated IOS Security and backup
WAN for link redundancy to help ensure high availability of critical business applications.”

All of the router’s ports are located on the back of the device as shown in Figure 4-1. These
connectors are:

• 10/100 Ethernet port

• Console port for configuration (asynchronous RS232)

• AUX port

• ISDN Interface (right card)

• 4 port Ethernet switch card (left card)

• Power connector (12V, -12V, and 5V DC inputs)

Both the Ethernet and ISDN card have been riveted into the chassis. They are actually standard
WIC-4ESW and WIC-1B-S/T modular cards, but Cisco has riveted them into place to make a fixed
system model for the CISCO 1700 router series.

28 | Investigation of sanitization completeness

Figure 4-1: CISCO1712 router connector side

Inside there is another installed card: a MOD1700-VPN VPN encryption module used to offload
the main CPU when handling encrypted traffic [71].

Figure 4-2: CISCO1712 inside view – with a MOD1700-VPN VPN encryption module in upper left-hand corner and

with the 4 port Ethernet (lower left slot) ISDN (lower right slot) and modules in place.

Investigation of sanitization completeness | 29

Figure 4-3: MOD1700-VPN VPN card removed. Top view (left) and bottom view (right)

Figure 4-4: WIC-1B-S/T ISDN card removed. Top view (left) and bottom view (right)

Figure 4-5: WIC-4ESW Ethernet switch card removed. Top view (left) and bottom view (right)

Figure 4-6 shows the logic board with the interface cards and the crypto card removed (the
interface cards’ rivets were drilled away). There are no components on the underside of this main
logic board. The numbers in the figure refer to the components listed in Table 4-1.

30 | Investigation of sanitization completeness

Table 4-1: CISCO1712 Interesting objects on main logic board

Object
Number Description

1 2 x 4 header solder point marked J3, CODE TAP
2 Two Intel E28F128 J3A150 16 MB flash TSOP56 memories marked U502 and U503
3 1 x 10 header solder point marked J1, JTAG
4 2 x 5 header marked J701, ISP PLD
5 CAT 28C256-12 32KB PLCC32 EEPROM marked U16
6 2 point jumper solder point marked J707, WD
7 2 point jumper marked J705, BRST

8 PLCC32 socket labeled U501 holding a 512 KB ST M27C4001 EPROM labeled “17-23 ,
58-02, CS=245E ROMMON, 0507 HK”

9 Freescale XPC862PZ100B
10 RAM, 64MB soldered and 32MB expansion module
11 20 pin (10 on each side) board edge connector.

Figure 4-6: View of main PCB with modules removed

The “show version” command in Output listing 4-1 provides some useful information with
reference to the objects of interests in Figure 4-6 (as numbered in Table 4-1):

Investigation of sanitization completeness | 31

• ROM Bootstrap corresponding to the 512 KB EPROM (object 8).
• CPU is a MPC862P (object 9)
• 32 KB of NVRAM. Corresponding to the 32 KB EEPROM (object 5)
• 32 MB of flash corresponding to the two 16 MB flash chips (object 2)
• 64 MB RAM + 32 MB RAM expansion (object 10). The “show version” command lists the

RAM divided into two parts “86598K/11706K bytes of memory”, where 86598KB is RAM
used to execute the IOS and 11706KB is I/O Memory dedicated to packet traffic [72]. For
the CISCO 1712 this is just a logical division performed upon boot and both regions share
the same physical RAM chips and the total amount of RAM is the sum, 96MB.

Output listing 4-1: Output of show version command on CISCO 1712
Router#show ver

Cisco IOS Software, C1700 Software (C1700-K9O3SY7-M), Version 12.3(11)T9, RELEASE SOFTWARE
(fc3)

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2005 by Cisco Systems, Inc.

Compiled Tue 13-Dec-05 05:20 by ccai

ROM: System Bootstrap, Version 12.2(7r)XM4, RELEASE SOFTWARE (fc1)

Router uptime is 1 minute

System returned to ROM by power-on

System image file is "flash:c1700-k9o3sy7-mz.123-11.T9.bin"

<snip>

Cisco 1712 (MPC862P) processor (revision 0x101) with 86598K/11706K bytes of memory.

Processor board ID FOC09100W7P (2205170844), with hardware revision 0000

MPC862P processor: part number 7, mask 0

1 Ethernet interface

5 FastEthernet interfaces

1 Virtual Private Network (VPN) Module

32K bytes of NVRAM.

32768K bytes of processor board System flash (Read/Write)

Configuration register is 0x2102

 Expansion cards: VPN card, ISDN and Ethernet switch 4.1.2

The MOD1700-VPN daughter card main component is an ADSP-2131L encryption coprocessor from
Analog Devices. An Atmel AT28LV010 128KBEEPROM is in the PLCC32 socket. One can notice the
interesting combination of labels: “Not for export without Authorization from the U.S Government”
and “MADE IN CHINA”. The 2 x 5 solder pads were tested with the JTAGulator. It exposes a TAP
interface to the Altera MAX programmable logic device. The VPN card clearly has EEPROM data
such as the one seen the “show diagnostic command” in Output listing 4-1. However, I believe that
the information stored is factory written data, such as firmware and serial numbers, and thus these
memories will not be part of my research when investigating the completeness of the sanitization.
The same assumption is made for the ISDN and 4 port Ethernet switch cards.

If the consistency of this data should be investigated, then we could connect a logic analyzer to
the memory control signals (such as WE going to the EEPROM) to ensure it is never written to
during normal operation. However, this is left for future work.

32 | Investigation of sanitization completeness

Output listing 4-1 "show diagnostic" command on CISCO1712

<snip>

Slot 3:

 Virtual Private Network (VPN) Module Port adapter, 1 port

 Port adapter is analyzed

 Port adapter insertion time unknown

 EEPROM contents at hardware discovery:

 Hardware Revision : 2.1

 Part Number : 73-4586-02

 Board Revision : C0

 Deviation Number : 0-0

 Fab Version : 03

 PCB Serial Number : FOC09103Y31

 RMA Test History : 00

 RMA Number : 0-0-0-0

 RMA History : 00

 Product (FRU) Number : MOD1700-VPN=

 EEPROM format version 4

 EEPROM contents (hex):

 0x00: 04 FF 40 01 79 41 02 01 82 49 11 EA 02 42 43 30

 0x10: 80 00 00 00 00 02 03 C1 8B 46 4F 43 30 39 31 30

 0x20: 33 59 33 31 03 00 81 00 00 00 00 04 00 FF FF FF

 0x30: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 0x40: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 0x50: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 0x60: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 0x70: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

<snip>

 ROM Monitor (Rommon) memory inspection 4.1.3

This router has at least two non-volatile memories: an EEPROM (object 5) and flash (object 2). In
the following paragraphs, we will describe how we write a marker to each of these two non-volatile
memories from the IOS CLI, reboot and try to find the marker by inspecting the memories using
Rommon.

4.1.3.1 Marker injection in NVRAM and flash

SNMP passwords are stored in the startup-configuration residing in NVRAM while the VTP
password is inside the vlan.dat file in flash. Table 4-2 shows the two markers that were used. These
markers were written to the indicated memories using the IOS CLI, then verified with CLI
commands to be stored in their respective non-volatile memories. The console log in Output listing
6-1 shows the details of how these markers were written and verified.

Investigation of sanitization completeness | 33

Table 4-2: First two markers

Parameter to
host marker

String marker
(10 random chars)

Parameter
storage

Storage
size

Marker
Strength

SNMP
password

MARKWHKMcflpXC NVRAM
(startup-config)

32KB 1 - 2*10-13

VTP Password MARKlscAlvXimn flash:/vlan.dat 32MB 1 - 2*10-10

4.1.3.2 Rommon Priv mode

In order to enter the privileged (priv) mode of Rommon, the router is power cycled and
Rommon mode is entered by sending a break signal prior to the IOS booting. The 5 first words
(double bytes) from the “cookie” command are added together and the least significant word is used
as the password to access the hidden priv mode.

Output listing 4-2: Acquiring PRIV mode access

System Bootstrap, Version 12.2(7r)XM4, RELEASE SOFTWARE (fc1)

TAC Support: http://www.cisco.com/tac

Copyright (c) 2003 by cisco Systems, Inc.

C1700 platform with 98304 Kbytes of main memory

monitor: command "boot" aborted due to user interrupt

rommon 1 > cookie

cookie:

01 01 00 13 7f 3b df 68 33 00 01 ff 04 48 00 11

00 00 00 00 00 00 00 00 46 4f 43 09 10 30 57 37

50 01 01 00 00 00 00 00 00 ff ff ff 58 04 49 23

09 01 ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

rommon 2 > priv

Password:

You now have access to the full set of monitor commands.

Warning: some commands will allow you to destroy your

configuration and/or system images and could render

the machine unbootable.

The Rommon is commonly used to change the boot method and to recover IOS if the flash has
been erased. Those commands are well documented. But the Priv mode in rommon is
undocumented to end users. (as far as I know), so making use if it requires some research. The
Rommon priv mode on this router offers interesting commands to inspect and change memory.
Table 4-3 shows some examples of priv model commands for the CISCO 1712, while Output listing
6-2 in Appendix C lists all of these commands.

34 | Investigation of sanitization completeness

Table 4-3: Examples of priv mode commands for CISCO 1712

Command Function

dump <address> <length> Displays memory contents to the console (hex dump style)

cpu Displays CPU type and version

flash info Shows flash information, such as base memory address

4.1.3.3 The Reading from NVRAM and investigating its structure

The NVRAM is a CAT 28C256 32 KB parallel EEPROM. It has a 14 bit address input and 8 bit data
I/O. Because it is directly addressable, it is likely that this chip will be mapped into some region of
the CPU’s address space. The flash info command shows the base address of the flash as
0x60000000, but the meminfo command does not show the NVRAM base memory address (as it
does on the Supervisor720 card [44]).

Output listing: 4-3: CISCO1712 Priv mode flash info and meminfo commands
rommon 12 > flash info

System flash info

flash driver info structure # 0

flash base: 0x60000000 flash width: 2

flash set size: 0x2000000 num banks: 2 device: INTEL 28F128J3A

total flash is 0x2000000

rommon 13 > meminfo

Main memory size: 96 MB.

Available main memory starts at 0x10000, size 98240KB

IO (packet) memory size: 10 percent of main memory.

NVRAM size: 32KB

rommon 14 >

According to the “Internetworking Troubleshooting Handbook” [73Fig. Table B–31] the
CISCO1720 has “NVRAM, WIC, internal, regs” at base address to 0x68000000. Since that is a
similar platform we will check what we can find at the same address using the dump command. The
first part of the dump is listed in Output listing 6-3 in Appendix C and it looks promising. Table 4-4
shows the first 0xBF0 of the contents of the NVRAM, with a description of their likely purpose.

Investigation of sanitization completeness | 35

Table 4-4: NVRAM contents - some highlights

Address offset in
(hex) relative to

base address
0x68000000

Length
(bytes, decimal) Description

0 1 Unknown (maybe some checksum or magic number)

1 128 Cookie, possibly followed by a two byte checksum

90 2 Config-register

91 6 Magic values “defd feed face”

148 275 Rommon environmental variables

658 216 Text with information about the software

75A 128 The cookie (again)

82C 909 Startup-config including the injected SNMP marker
MARKWHKMcflpXC

The cookie data (highlighted in Output listing 4-4) starts at byte offset 1 and contains the values
shown in

36 | Investigation of sanitization completeness

Table 4-5. A description of the cookie fields can be obtained by issuing the cookie command in
Rommon priv mode, see Output listing 6-4 in Appendix C. There are also a references on the web,
such as [74].

Output listing 4-4: Initial portion of the NVRAM (highlighting the cookie)

rommon 16 > dump 0x68000000 0xfff

68000000 8d74 0101 0013 7f3b df68 3300 01ff 0448
68000010 0011 0000 0000 0000 0000 464f 4309 1030
68000020 5737 5001 0100 0000 0000 00ff ffff 5804
68000030 4923 0901 ffff ffff ffff ffff ffff ffff
68000040 ffff ffff ffff ffff ffff ffff ffff ffff
68000050 ffff ffff ffff ffff ffff ffff ffff ffff
68000060 ffff ffff ffff ffff ffff ffff ffff ffff
68000070 ffff ffff ffff ffff ffff ffff ffff ffff
68000080 ffff 1342 ffff ffff 0000 0000 0000 0000

68000090 2102 defd feed face 0000 0000 0000 000a

…

Investigation of sanitization completeness | 37

Table 4-5: Cookie contents

Cookie
offset
(hex)

Value
Description

0 0x01 vendor

1 0x01 version

2-7 00:13:7f:3b:df:68 MAC address

8 0x33 processor

9 00 NVRAM size code (0x00 stands for 32K)

a 01 CPU speed code (0x01 stands for 50 MH)z

b FF unused

c-d 0448 Board PM ID

e-f 0011 number of allocated MAC addresses (0x0011 - this device was
allocated 17 MAC addresses)

10-17 00 00 00 00 00
00 00 00

8 bytes of zeros

0x18-0x22 0x464f,
0x4309,0x1030,
0x5737, 0x5001,
and 0x01

board serial number (0x464f, 0x4309,0x1030, 0x5737, 0x5001,
and 0x01 which corresponds to “FOC09100W7P” followed by
0x0101) – this value was shown as the processor board ID in
Output listing 4-1, and in the barcode label on the board (Figure
1-1Figure 4-6)

23-24 00 00 deviation.

0x25-0x2c 00 00 00 00 ff ff
ff 58

2d 0x Board configuration

2e-37 49 23 09 01 ff ff
ff ff ff ff

After 32KB, at address 0x68008000 the same NVRAM data repeats .This appears to be an exact
copy of the NVRAM contents. As the chip is only 32 KB it can only contain this amount of data, but
it seems that the chip select logic inside the CPU enables the chip for two different base addresses
0x68000000 and 0x68008000 – thus reading from the second set of addresses reads the same
memory cells again.

38 | Investigation of sanitization completeness

4.1.3.4 Writing to NVRAM from Rommon priv mode

The first part of NVRAM, as seen in Output listing 6-7 in Appendix C, contains vital data structures,
such as the device’s primary Ethernet’s MAC address. We must not overwrite these values, but
address 0x68000660 contains some text string coming from the IOS*, so that seems safe to try and
write to. According to the CAT28C256 datasheet [75] writing to the EEPROM NVRAM is simple. A
single byte can be written and the old data is automatically erased. However, when I tried using the
alter and fill commands each appeared to happily execute, but no data was changed. The datasheet
mentions a feature called “Software Data Protection”. The chip can be put in a special write
protected mode so that all writes must be prepended by a 3 byte magic sequence. There is also
another special magic sequence to turn off “Software Data Protection” completely. That special write
protect deactivation sequence was written to the chip, but still the memory could not be written.

To understand why these writes fail, I listened to the CPU’s signals to the chip. A Pomona
PLCC32 test clip was clamped around the EEPROM (Figure 4-7) and the signals in Table 4-6 were
connected to the digital inputs of a Cleverscope CS328A digital oscilloscope.

Figure 4-7: EEPROM PLCC32 Testclip on the NVRAM of CISCO1712

Table 4-6: Measured EEPROM pins

PLCC32 pin Short name Name

23 CE Chip Enable Inverse

(This signal was also used as trigger.)

31 WE Write Enable Inverse

25 OE Output Enable Inverse

13 IO0 I/O bit 0 (least significant bit)

According to the datasheet, data is written when OE is high and when both WE and CE go low.

Figure 4-8 shows a snapshot of the signals when NVRAM is written during execution of the
built in Rommon priv command “ menu, nvram test”. WE and CE both correctly go low. On the other
hand, Figure 4-9 shows what goes wrong when we try to write a byte 0xA1 with the command “fill -b
0x68000660 0x1 0xa1”. We can see a bit coming in on I/O pin, but the CPU never pulls WE down,
therefore nothing is written. I also tried to write to the address 0x68008660 without success.

* The start-config srcript actually starts at offset 0x82C, so I should have used this address rather than an offset
of 0x660. However, I used an offset of 0x660 for my testing.

Investigation of sanitization completeness | 39

Figure 4-8: EEPROM Control signals during Rommon priv NVRAM test

Figure 4-9: EEPROM Control signals during Rommon priv fill command

4.1.3.5 The MPC862 internal memory controller logic

To investigate why the WE signal is never pulled low, I did some research on the memory controller
logic inside the MPC862.Its operation is explained in Chapter 15 of this processor’s reference
manual [76].

The CPU has 8 configurable “banks” of memory numbered 0 to 7. The memory region to control
is defined for each bank by a 17 bit Base Address and a Mask. The Base Address is the most
significant portion of the address on the memory bus. Each bank has configurable properties, such
as data width, write protect, and whether parity is used or not. For each bank there is also a
“machine” selection property which determines the control signal logic to interface to different types
of memory. For example, reading and writing to RAM may need different timing and control signals
than to an EEPROM.

The banks’ configuration is stored in a special memory block inside the CPU holding various
settings. The location of this memory block in memory space is determined by a register called
“Internal Memory Map Register” (IMMR). This register is initialized at CPU startup. In the
CISCO1712 IMMR is to 0xff000000. The IMMR register and memory controller settings can be
found by the Rommon priv menu choice “show 862 registers”. The output of this command is
shown in Output listing 6-5 in Appendix C. An (almost) working Java program (see Output listing
6-13 in Appendix G) was written to decode the memory control registers and emulate the memory
block selection mechanism for an address. The program’s output is shown in Output listing 6-6 in
Appendix C. I guess that bank#0 is for an 8 bit datapath BOOT ROM. Bank#6 is for flash and is
write protected. Bank#7 fits the EEPROM address and the 8 bit width is just what would be
expected for the EEPROM chip. We note that this bank is not write protected.

A continuity trace from the EEPROM’s WE pin reveals it is not directly connected to the CPU. It
terminates in at pin 55 on an Altera EPM7128 in the center of the logic board. This a programmable
device [77] and pin 55 is a general I/O pin. The Altera chip has a security feature so the contents
may not be possible to read out. At this point I think the easiest next step to understand how to

40 | Investigation of sanitization completeness

activate the WE line properly is to disassemble the rommon or IOS code and search for parts where
the EEPROM NVRAM is programmed. Such as during a config-register 0Xxxxx command.
However, this work will be relegated to the future work section of the thesis, because I am not very
experienced with reverse engineering machine code and there might also be legal complications in
doing so. Later on in Section 4.1.8 we will see that the device actually sanitizes the contents of the
EEPROM sufficiently using the built in routines, thus direct memory write access to this chip is not
crucial.

4.1.3.6 Reading from flash and investigating its file system

The flash chips are two Intel E28F128 J3A150 16MB NOR flash chips. According to the
datasheet they can be read using direct parallel memory access [78], so it is likely they are mapped
into the address space. The flash info command shows the base address of the flash as 0x60000000
and the size to 32MB.

Output listing 4-5: CISCO1712 Priv mode flash info and meminfo commands

rommon 12 > flash info

System flash info

flash driver info structure # 0

flash base: 0x60000000 flash width: 2

flash set size: 0x2000000 num banks: 2 device: INTEL 28F128J3A

total flash is 0x2000000

rommon 13 >

We can begin to inspect the flash using the “dir” flash comment. The dir flash command lists
two active files and 4 deleted files (as shown in Output listing 4-6)

Output listing 4-6: CISCO1712 Rommon PRIV mode dir flash

rommon 52 > dir flash:

 File size Checksum File name

 13296264 bytes (0xcae288) 0x2384 c1700-k9o3sy7-mz.123-11.T9.bin

 600 bytes (0x258) 0xba86 vlan.dat (deleted)

 600 bytes (0x258) 0x2c42 vlan.dat (deleted)

 600 bytes (0x258) 0x7cf8 vlan.dat (deleted)

 600 bytes (0x258) 0x94e9 vlan.dat (deleted)

 600 bytes (0x258) 0x759c vlan.dat

rommon 53 >

The first 128 bytes memory following the flash base address are shown in Output listing 4-7. The first 16 bit
word 0xbad0 0x0b1e seems crafted and is probably magic number. We can see the file size (0x00cae288),
checksum (0x2384), and the name of the file “c1700-k9o3sy7-mz.123-11.T9.bin”. The contents of the
executable file starts at 0x60000040 (set as red text in the table).

Investigation of sanitization completeness | 41

Output listing 4-7: CISCO1712 Priv mode flash memory dump
rommon 51 > dump 0x60000000 0x80

60000000 bad0 0b1e 00ca e288 2384 ffff 0000 0000#.......

60000010 6331 3730 302d 6b39 6f33 7379 372d 6d7a c1700-k9o3sy7-mz

60000020 2e31 3233 2d31 312e 5439 2e62 696e 0000 .123-11.T9.bin..

60000030 0000 0000 0000 0000 0000 0000 0000 0000

60000040 7f45 4c46 0102 0100 0000 0000 0000 0000 .ELF............

60000050 0002 0033 0000 0001 8000 8000 0000 0034 ...3...........4

60000060 0000 0054 0000 0000 0034 0020 0001 0028 ...T.....4. ...(

60000070 0006 0000 0000 0001 0000 0144 8000 8000D....

rommon 52 >

If we inspect the memory at the end of the end of the first file we see a similar structure (Output
listing 4-8), 0xbad0 0b1e magic number (starts the highlighted text in red), followed by a file
header, followed by the file itself. In this case the file is a previously deleted VLAN.dat file.

Output listing 4-8: CISCO1712 flash deleted file header

rommon 55 > dump 0x60cae288 0x80

60cae288 3a00 0000 169d ca00 0000 0000 0000 000d :...............

60cae298 0000 0018 feed bac0 4349 5343 4f20 5359CISCO SY

60cae2a8 5354 454d 5300 0000 fade fad1 0000 0018 STEMS...........

60cae2b8 ead6 7067 bb1e d320 2e30 9799 0df4 4da3 ..pg... .0....M.

60cae2c8 bad0 0b1e 0000 0258 ba86 fffe 0000 0000X........
60cae2d8 766c 616e 2e64 6174 00ff ffff ffff ffff vlan.dat........

60cae2e8 ffff ffff ffff ffff ffff ffff ffff ffff

60cae2f8 ffff ffff ffff ffff ffff ffff ffff ffff

rommon 56 >

Looking further into the flash memory, we find our VTP password marker in Output listing 4-9

Output listing 4-9: CISCO1712 flash active vlan.dat
60caed28 bad0 0b1e 0000 0258 759c ffff 0000 0000Xu.......

60caed38 766c 616e 2e64 6174 0000 0000 0000 0000 vlan.dat........

60caed48 0000 0000 0000 0000 0000 0000 0000 0000

60caed58 0000 0000 0000 0000 0000 0000 0000 0000

60caed68 badb 100d 0000 0002 0200 0000 0000 0000

60caed78 0000 0000 0000 0000 0000 0000 0000 0000

60caed88 0000 0000 0000 0000 0000 0000 0000 0000

60caed98 0000 0000 0000 0001 3030 3030 3030 303000000000

60caeda8 3030 3030 827f 244a ee8a 68bb e96e 048e 0000..$J..h..n..

60caedb8 4fa7 82d5 0e4d 4152 4b6c 7363 416c 7658 O....MARKlscAlvX
60caedc8 696d 6e00 0000 0000 0000 0000 0000 0000 imn.............

42 | Investigation of sanitization completeness

Comparing the file headers of active and deleted files a pattern emerges of the file meta data and
contents – as shown in Table 4-7. There is no file system table. Files with their headers are laid out
sequentially after each other. And file deletion is performed by changing a flag in the header.

Table 4-7: Probable CISCO1712 flash file format structure

Magic start

 of header

0xbad00b1e

 (4 bytes)

Length

4 bytes

Checksum

2 bytes

Flags 2 bytes

0xffff = active

0xfffe=deleted

Padding

2 bytes

File name.
0x00
terminated.
Padded to 48
bytes

File contents

This corresponds well to the C source code class B file header in the Cisco Flash File System tool
written by Simon Evans [79]. The date field in our case is not set but that makes sense as the
CISCO1712 does not have a real-time clock (and I didn’t use any Network Time Protocol time source
during the tests).

Table 4-8: Class B file header from fileheader.h from http://si.org/cffs/
#define CISCO_CLASSB 0xBAD00B1E

/* Class B file header */

struct cb_hdr {

 uint32_t magic; /* CISCO_CLASSB */

 uint32_t length; /* file length in bytes */

 uint16_t chksum; /* Chksum */

 uint16_t flags;

 uint32_t date; /* Unix date format */

 char name[48]; /* filename */

};

/* Class B Flags */

#define FLAG_DELETED 1

#define FLAG_HASDATE 2

4.1.3.7 Writing to flash

How can we write to the flash memory from the tools offered in Rommon priv mode? Using the
memory write commands alter and fill generates a “Machine Check Exception” while writing to the
flash region. Probably because the CPUs memory controller is configured for the flash memory
region to be write protected (see Register#6 in Output listing 6-6 in Appendix C). From the flash
pre-study on flash memory in Section 2.1.3 we know that it should be possibly to reprogram a 1 to 0.
The file system creators probably designed the delete flag with this flash property in mind, hence the
bit is set at the time the file is first written and can easily be cleared later to perform a file “delete” –
without having to re-write the block that this file header is in. After experimenting with various
Rommon priv mode commands, I arrived at this conclusion for how to write to flash:

• The command “flash erase” starts erasing the whole flash, eventually leaving it in an all
0xFF state. The erase process takes longer than a minute, but can be stopped
prematurely by sending a RS-232 break signal.

• The command “flash prog <source> <destination> <size>” programs (i.e. flipping 1 to
0) the flash memory starting at <destination> by copying <size> bytes from a <source>.
Source address can point to flash, RAM, or NVRAM regions. <Size> must be at least 2.

Using our new flash write knowledge, we test the idea of how the deleted flag functions by
modifying this flag for the first executable file which is currently visible. In our case, this is the IOS

Investigation of sanitization completeness | 43

file listed in Output listing 4-6 and with a file header shown in Output listing 4-7. That is, we need to
flip the least significant bit from 1 to 0 in the byte at address 0x6000000A. The “flash prog”
command needs to read from RAM. According to the meminfo command output in Output listing:
4-3 RAM starts at address 0x10000 (64k). In this router we have 96MB to use. Address
0x2000000 is roughly in middle of that address range and looks empty so we can probably use it as
a buffer for storing temporary data. According to the flash chip datasheet, this chip has an erase
block size of 128 Kbyte = 0x2000000 [78]. We could program as little as two bytes but in this test
we will work on a block size quantity of memory.

The console log in Output listing 4-10 shows the method being tested. The first block from the
flash (containing the file header) is copied to RAM, the delete flag is changed (0xFFFF > 0xFFFE),
and the block is copied back to flash. Executing a dir flash command shows that the file is now
indicated as “deleted”.

Output listing 4-10: CISCO1712 modify file delete flag
rommon 60 > #Move first flash block to RAM

rommon 61 > move -b 0x60000000 0x2000000 0x20000

rommon 62 >

rommon 62 > #Modify delete flash

rommon 63 > alter -w 0x200000A

200000a = ffff > fffe

200000c = 0000 > quit

rommon 64 >

rommon 64 > #copy back

rommon 65 > flash prog 0x2000000 0x60000000 0x20000

Programming location 60010000

rommon 66 > dir flash:

 File size Checksum File name

 13296264 bytes (0xcae288) 0x2384 c1700-k9o3sy7-mz.123-11.T9.bin (deleted)

 600 bytes (0x258) 0xba86 vlan.dat (deleted)

 600 bytes (0x258) 0x2c42 vlan.dat (deleted)

 600 bytes (0x258) 0x7cf8 vlan.dat (deleted)

 600 bytes (0x258) 0x94e9 vlan.dat (deleted)

 600 bytes (0x258) 0x759c vlan.dat

4.1.3.8 Conclusions on using the ROM monitor

We have successfully showed that the Rommon mode can be used to read from the two non-volatile
memories of this router. Although we were not able to write to the NVRAM EEPROM, it is likely to
be possible with some additional research. The main problem using this approach is speed. All data
transfers take place over the terminal’s RS-232 asynchronous console and the console port’s
maximum speed is limited to a maximum baud rate of 115,200 bps. Transferring the full 32 KB
EEPROM contents is fast, but reading the entire 32MB flash at this maximum console speed with
the overhead of the hexdump format would take about 2 hours. Although this is doable, it is not very
efficient. This is especially true since vendors typically increase flash sizes on their devices over time
as their software gets bigger. However, the console baud rate has not increased proportionally.
Rommon has TFTP download transfer capabilities, but I have not found any way to upload data
using TFTP. Perhaps it might be possible to change the first file size so it spans the entire flash, boot
the IOS over TFTP and then transfer that whole file to a TFTP server over Ethernet. However, the
forensic value of doing so is limited because once we boot IOS the running code can modify the
content of the flash and EEPROM we want to examine. So this method would have to be combined
with some hardware write protection of the non-volatile memories, such as pulling WE to VCC on
the memory chips.

Erasing memories can be done without transferring all of the data via the terminal interface. A
flash and RAM block could be written to with a pattern and the compare function can be used to
verify that the RAM and flash contents match.

44 | Investigation of sanitization completeness

From a professional refurbisher’s perspective, the rom monitor is a practical method to inspect
and change non-volatile memories, but is too slow for transferring large amounts of data. An
automated (scripted) tool could be made to erase a number of devices in parallel and this would
effectively reduce the time needed per device. The benefit of this approach would be ease. Nothing
has to be soldered and the device enclosure does not even have to be opened. However, the erasure
and verification using this approach are dependent upon the correctness and trust of the Rommon
program.

 JTAG exploration of the CISCO1712 mainboard 4.1.4

Header pins were soldered to the row of 10 through holes labeled J1 JTAG. The JTAGulator was
connected but did not find the JTAG signals. The CPU was removed to expose its BGA connector
pads pins and the pinout checked with continuity check using a multimeter. The result is in table

Table 4-9: CISCO1712 J1 JTAG port pinout.

J1 Pin# CPU Pin# CPU pin name

1 GND

2

3

4

5 N4 HRESET

6 G18 TMS

7 H17
TDI/SDI

8 G17 TDO/DSDO

9 H16 TCK/DSCK

10 GND

All 4 required JTAG signals should be present on pins 6-9 but the JTAGulator was not able to
communicate with the TAP. It seems the JTAG functionality of the CPU is disabled by configuration.
The MPC862 CPU debug pin functionality is controlled by 4 bits in the Hard Reset Configuration
Word sampled from the data lines during startup. The priv command register printout (see Output
listing 6-5 in Appendix C) shows this so-called System Interface Unit Module Configuration Register
(SIUMCR) : siu_mcr : 0x00230440. Bits 11 and 12, counting from bit 0=MSB is “10” which
according to the manual means “reserved” and seems to disable JTAG. And the flag bit 15: “Debug
register lock” is set too, preventing the JTAG port from being enabled by writing a new SIUMCR to
the IMMR address of 0xff000000.

I will leave to future work to research how to enable the JTAG port on the CISCO1712.

Investigation of sanitization completeness | 45

 BDM port access to the CISCO1712 4.1.5

Header pins were soldered to the 10 solder pads labeled “J3 CODE TAP”. The CPU was de soldered
to expose its BGA connector pads and the pinout derived from a continuity check using a standard
multimeter. The result is shown in table Table 4-10.

Table 4-10: CISCO1712 J3 BDM port pinout.

J3 Pin# CPU Pin#
CPU pin
name

Meaning according to CPU manual [76 Table
12-1]

1 G3 FRZ/IRQ6 Freeze

2 P2 SRESET Soft reset

3 GND

4 H16 DSCK/TCK Provides clock to scan chain logic or for the development
port logic.

5 GND

6 G3 FRZ/IRQ6 Freeze

7 N4 HRESET Hard Reset

8 H17 DSDI/TDI Input serial data for either the scan chain logic or the
development port and determines the operating mode of the
development port at reset.

9 F16 VCC

10 G17 DSDO/TDO
Output serial data for either the scan chain logic or for the
development port.

This corresponds to the standard pinout of a Freescale BDM port [80p. 2]. I connected a
specialized hardware tool called Cyclone MAX from PE Micro. The vendor says this device can
debug Motorola/Freescale CPUs over the BDM as well as program flash memories behind the CPU.

I attached the Cyclone MAX to the CISCO1712 BDM port and connected it via USB to a
computer running a version of Microsoft Windows and fired up the PROGPPC tool that PE Micro
recommends to program flash memory. The tool would successfully connect to the CPU, so I
thought it would be an easy task to read and write to the flash, since we know the physical address is
(0x60000000) and the size from the Output listing 4-5 in the rommon investigations. However, this
proved to be far from easy. It seems the problem is that the programmer begins it operation by
resetting the CPU, and with that the whole CPU configuration including the memory manager unit.
It then reconfigures the CPU and transfers a small program to the CPU to execute and to program
the flash. I could not make it configure the CPU memory manager unit as I wanted. The preffered
way would be to start the device normally and have it configure the CPU and then let the debugger
intercept, and continue controlling the CPU with an already properly configured memory manager.
The vendor said it might be possible, but after 2 months they still have not supplied a solution,
therefore I gave up on this track. My perception is that this tool is not very helpful when trying to
reverse engineer existing devices. It was indeed a misspent US$1000.

46 | Investigation of sanitization completeness

Figure 4-10: Cyclone MAX BDM debugger connected to a CISCO1712 BDM port

The benefit of using this device would be speed, as this interface seems to have a high transfer
rate. However, from a refurbisher’s point of view utilizing the BDM port on the CISCO1712 is still a
time consuming method to sanitize the device, because:

1. The enclosure has to be opened.

2. The crypto card must be dismounted.

3. For BDM board connection either header pins have to be soldered or some spring loaded
connector must be pushed against the solder pads. Preferably, the logic board should be
placed in a customized jig to hold it in place and secure the spring loaded connector against
the solder pads.

This work may not sound much, but if you have thousands of units to process every month each
minute of manual work is important. Considering the work above, I believe the BDM method does
not really fit into any category of use for this device. A professional refurbisher would prefer the
RS232/rommon interface (explored in Section 4.1.3), since this is accessible from the outside. The
transfer rate is not important because the devices can be hooked up to a scripted tool and several
devices can be processed in parallel without any manual labor required while the script is running.

A forensic investigator, who may not trust the rommon code to provide accurate data, would
simply desolder the chips and read out the contents from an external programmer.

However, there may be other devices where the BDM port is in fact the best option, so I will still
relegate further investigation of this method to the future work Section in 6.3.

 Using a programmer to access the NVRAM of the CISCO1712 4.1.6

The CAT 28C256-12 32KB PLCC32 EEPROM is soldered to the logic board. Would it be possible to
read and write to it using a programmer while it is soldered to the motherboard? I made an adapter
between the Pomona PLCC32 testclip and a DIP placeholder according to the datasheet [75]. The
DIP adapter was inserted into a GQ-4X programmer as shown in Figure 4-11. To verify the setup, a
loose de-soldered EEPROM was inserted into the jaws of the test clip and successfully read from.

Investigation of sanitization completeness | 47

Figure 4-11: CISCO1712 EEPROM programmer connection to the GQ-4X programmer

However, reading from the EEPROM on the board was not successful. If the router was powered
off, one could notice the front LEDs starting to light up. So it the programmer was trying to provide
5V power to the entire router via the EEPROM VCC pin. I disconnected the Vcc supply from the
programmer and powered the router on using its normal power supply. The programmer would just
read nonsense and random data.

The problem is that the CPU (or intermediate circuitry) is actively driving the pins of the
EEPROM to TTL logic levels; hence our programmer cannot do its job. For instance, the OE pin is at
3.3V immediately after power on. The shortcut current to ground is 91 mA so there is low
impedance to Vcc of 5V. For the programmer to work the surrounding circuitry interfacing the
EEPROM’s address, data I/O and control signals must be put in high impedance mode. The CPU
manual suggest that HW reset can be used to put address and data lines in high impedance mode
[76 Table 12-1. Signal Descriptions]. I tried combinations of the CPU’s HW reset and CPU Freeze
pins on the BDM port, but could not make it release its bus control of the EEPROM.

According to the CPU manual, there is a JTAG instruction called HI-Z which puts all output
pins into high impedance mode [76Para. 46.4.5]. Since the JTAG TAP interface is disabled at CPU
boot (see Section 4.1.4) testing the HI-Z JTAG instruction in combination with the programmer is
left for future work.

The web article “Understanding In-Circuit EEPROM and Microcontroller Reading and
Programming” [81] proposes some tricks to access serial EEPROMs in-circuit. One of them is to
power the system with a reduced voltage. The idea is to find a voltage window where the CPU will
not start (and take control of the bus), but still sufficient to power the EEPROM. In our case, we
have a parallel EEPROM - but perhaps the same ideas could be applied.

According to the CPU hardware specification the processor can operate between 3.135V and
3.465V [82 chapter 6 table 5]. The EEPROM datasheet says it has a nominal supply voltage of 5V
±10%, but at the same time it mentions a “write inhibit function” that prevents writes when the
supply voltage drops below 3.5V. Perhaps that means it is still possible to read from it below 3.5V.

To complicate things the EEPROM data, address, and control lines is not connected directly to
the CPU. I have not investigated this entirely, but there is at least a transceiver chip and a
programmable logic device involved. Therefore, I tried the simple approach: Lower the “5V” supply
voltage in 0.5V steps and see if there is a level where the programmer successfully can read out the
EEPROM contents.

The CISCO1712 has an external power supply providing 5V as well as +12V and -12V. It seems to
start fine on 5V only, with the exception that RS232 does not work. As such, I conclude that the 3.3V
to the CPU is derived from the 5V supply.

48 | Investigation of sanitization completeness

I opened the router power supply and connected a variable output power supply to the 5V lead.
The “5V” was then gradually reduced in steps of 0.5V to see if there was any level where the GQ-4X
programmer could read out the EEPROM contents. No success. I noted though that the router went
into reset once the “5V” router supply voltage level fell below 4.7V.

Figure 4-12: CISOC1712 power supply with external voltage control on its 5V lead.

Perhaps the low cost GQ-4X programmer cannot supply enough current to force the pins to TTL
levels in competition with the other drivers on the bus. After Xeltek assured me their $2000
SuperPro programmer had current limiters on their interface pins I dared to use it for the same
procedure (although they said that on-board programming of parallel chips is not recommended).
Their Windows tool reported a variety of error messages and data was not read correctly at any
voltage level tested. Although the programmer screen incorrectly reported “READ OK!” (see

Investigation of sanitization completeness | 49

Figure 4-13) The results are shown in Table 4-11. (And yes, both the router and the programmer
survived these tests).

50 | Investigation of sanitization completeness

Table 4-11: CISCO1712 onboard NVRAM read result with a Xeltek SP6100 programmer and varying supply voltage

“5V”

Supply voltage to router

Data read Xeltek Winpro error message

5.0V rubbish

4.7V All 0xFF

4.5V & 4.0 All 0xFF

3.5V, 3.0V and 2,5V All 0xFF

2,0V All 0x0c

1.5V All 0x00

Investigation of sanitization completeness | 51

Figure 4-13: Programmer connected to CISCO1712 NVRAM chip.

I have not found any advice or evidence that a parallel EEPROM can be successfully
programmed in circuit. However, I also have not found any evidence that it is impossible. In fact, it
will be shown later (in Section 4.1.8.3) that we can force a low TTL level into high by connecting the
EEPROM WE pin to VCC, without damaging the conflicting driver output stage.

Perhaps this method can work for all pins if the circumstances are favorable. For example,
competing drivers have some current limiter, and our programmer can supply enough current to
change the TTL level. Thus in “Mythbusters” terminology I will call in-circuit programming of a
parallel EEPROM plausible, but relegate it to the future work section.

 Other board debug ports on the CISOC1712 4.1.7

The 2 x 5 pre soldered header labeled J701 ISP PLD has a JTAG TAP interface to the Altera MAX
EPM7128AETC100 in the center of the board. This was verified with the JTAGulator and the pinout
is TDI: 9, TDO: 3, TCK: 1, TMS: 5

I do not know the exact purpose of the Altera MAX chip but according to the datasheet it is
boundary scan / EXTEST instruction capable [83]. I/O pin 55 has a galvanic connection (continuity
checked) to the WE pin on the NVRAM EEPROM chip. The Altera chip is both 5V and 3.3V capable
according to the datasheet. Since the CPU is 3.3V and some components on the board such as the
EEPROM is 5V I thought this could work as some level converter between the two sides. However,
neither the MSB nor LSB of the CPU address or data bus pins are connected to it. Exploring the
functionality of this chip is left for future work.

The 2 x 10 board edge connector labeled J703 has power input lines and also has pins that
connect to the console port’s RX and TX pins. Close inspection of the pins shows scratch marks so
this connector is used during production. My guess is that the all the surface mount components are
placed first and tested using the board edge connector, since the power and console ports may not
be soldered on yet.

52 | Investigation of sanitization completeness

 Investigation of the effect of vendor sanitization commands on CISOC1712 4.1.8

To reset a router running IOS 12.3 mainline software to factory defaults Cisco advices use either of
the two procedures (that I have labeled CISCO_IOS_1 and CISCO_IOS_2) in Appendix A. The first
procedure erases the non-volatile configuration, while the second loads a default configuration that
is subsequently written to non-volatile storage. To test if these two procedures properly sanitize a
router the 4 markers shown in Table 4-12 were configured. A 512-bit RSA key was also generated, as
shown in Output listing 4-11.

Table 4-12: CISCO1712 markers

Parameter to
host marker

String marker
(10 random chars)

Parameter
storage

Storage
size

Marker
Strength

SNMP
password

MARKyeTBGfMWEF NVRAM
(startup-config)

32KB 1 - 2*10-13

VTP Password MARKpBcFsXZGVs flash:/vlan.dat 32MB 1 - 2*10-10

TFTP_FILE MARKNuAjQAyJtv NVRAM
(environment
variable)

32KB 1 - 2*10-13

Hostname MARKgJlBDKowbK NVRAM
(startup-config)

32KB 1 - 2*10-13

Investigation of sanitization completeness | 53

Output listing 4-11: CISCO1712 RSA key generation
MARKgJlBDKowbK(config)#crypto key generate rsa

The name for the keys will be: MARKgJlBDKowbK.domain.com

Choose the size of the key modulus in the range of 360 to 2048 for your

 General Purpose Keys. Choosing a key modulus greater than 512 may take

 a few minutes.

How many bits in the modulus [512]:

% Generating 512 bit RSA keys ...[OK]

MARKgJlBDKowbK(config)#

Mar 28 13:35:47.999: %SSH-5-ENABLED: SSH 1.99 has been enabled

<SNIP>

MARKgJlBDKowbK#show crypto key mypubkey rsa

% Key pair was generated at: 13:35:47 UTC Mar 28 2006

Key name: MARKgJlBDKowbK.domain.com

 Usage: General Purpose Key

 Key is not exportable.

 Key Data:

 305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00CF96DE 6729EECF

 E3BB3230 7D760657 9F1AA209 A9DCAF31 E8DA7ECB 5102FD83 72793048 7A61A1BD

 40DA9F65 09AD11FA DF74BDEC 0F904580 B1D29E35 2D173739 31020301 0001

% Key pair was generated at: 13:35:49 UTC Mar 28 2006

Key name: MARKgJlBDKowbK.domain.com.server

 Usage: Encryption Key

 Key is exportable.

 Key Data:

 307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00BD1B4B 6B239E4B

 4BAB4835 236447C5 B2DAE27E 060E35B0 E326C069 79063CF2 03B1AA84 578FE4E7

 FA46C28D E4CF7BEA 381C1293 58B4C46A E7AC2409 D7D4E017 C2834AA9 2A47BE65

 D07496AA 405BD2A5 4B35EDCC E05B53BD 819FCD19 9F3CD80E 25020301 0001

The configuration was then copied to startup-config. Note that the cryptographic key is not
stored in the startup-config file itself, but rather in a special file in NVRAM called private-config.
That file does not have the read flag set (as shown in Output listing 4-12) and thus is inaccessible
via the built-in IOS “more” command. However, we can see the contents by inspecting the NVRAM
chip’s memory contents using the IOS command “show memory 0x68000000”. Output listing 6-7
in Appendix C shows the start of the private key at address 0x6800101F.

Output listing 4-12: CISCO1712 private-config in “dir NVRAM:”
MARKgJlBDKowbK#dir nvram:

Directory of nvram:/

 25 -rw- 1140 <no date> startup-config

 26 ---- 1127 <no date> private-config

 1 -rw- 0 <no date> ifIndex-table

 2 ---- 12 <no date> persistent-data

29688 bytes total (25321 bytes free)

54 | Investigation of sanitization completeness

The VTP password marker is verified as being stored in the in the flash:/vlan.dat file as shown
in Output listing 4-13.

Output listing 4-13: Marker verification in vlan.dat file before sanitization
MARKgJlBDKowbK#more flash:/vlan.dat

:[^P

^@^@^@^B^B^@^
@^@^@^@^@^@^@^@^@^@^@^A000000000000/o
 ^[^\/^^U.b^Y^Qp^R^NMARKpBcFsXZGVs^@
^@^E^B^B^@^@^Bt0tdefault^
@^A^A^E\^@^A^@^A^F!^S^@^@^@^@^C
j^Ck^@^@^@^@^@^@^Lfddi-
default^@^B^A^E\^Cj^@^A

^S^@^@^@^@^@^A^Ck^B^@^@^@^@^@^Rtoken-ring-
default^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^C^A^E\^Ck^@^A

^K^@^@^A^@^Cm^@^A^Cj^B^A^@^@^Ofddinet-
default^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^D^A^E\^Cl^@^A

^L^S^A^B^@^@^@^@^@^@^B^@^@^@^@^@

trnet-default^@^E^A^E\^Cm^@^A

^S^A^B^@^@^@^@^@^@^B^@^@^@^@^@^Bt0|^@^@^@^A^@^@^@^Bt08^E^B^@^@^Cj^Ck^Bt1^D^@^@^Cj
^@^@^@^P^Bt1@^A^A^@^@^D^A^@^@^E^B^@^@^@^A^Ck^Bt2^L^@^@^Ck^@^@^@^T^Bt1H^A^A^@^@^B^
A^@^A^D^A^Cm^E^B^@^@^@^A^Cj^Bt2^T^@^@^Cl^@^@^@^Bt2P^B^A^@^A^C^A^@^B^@^@^@^@^@^@^C
m^@^@^@^Bt2X^B^A^@^A^C^A^@^B

MARKgJlBDKowbK#

The vendor proposed procedure CISCO_IOS_1 was performed followed by CISCO_IOS_2
(Apendix A) and the router powered off. The router was then booted in Rommon and the NVRAM
was inspected using the PRIV mode “dump” command. The SNMP password and hostname
markers had been removed, but the TFTP_FILE marker was still present.

The router was then booted and the vlan.dat file was still present with the marker in the flash
file system. Since both routines were performed in sequence, I conclude that neither of them has
erased the TFTP_FILE or VTP password markers. While not proven formally via this test, I suspect
that the factory default reset routines leave all of the environment variables and flash files intact.
What information leakage could this cause? The environmental variables are used to control the
boot process and to configure IP addresses and file names to load a new software file over TFTP.
This information could identify the previous owner’s TFTP server IP address; however, I consider
this to be quite harmless. If the TFTP server has a public IP address it is exposed already. If it has a
private IP address behind a firewall it is protected from outside access. However, the retention of
the VTP password is more serious as will be addressed in the following paragraphs.

4.1.8.1 The vlan.dat file

The information in the vlan.dat file is potentially sensitive. This information includes the VLAN
database, which gives insight into how the previous owner’s LAN network was structured. VTP is a
protocol used to distribute VLAN information between switches, with one switch acting as a server
and distributing VLAN numbers and names to the other switches that act as clients. Given the VTP
password and layer 2 trunk port access to a network it would be possible to pretend to be the VTP
server and distribute a new VLAN list to the clients. Alternatively, one could distribute an empty list
to remove all VLANs, causing all of these VLANs to be unavailable. This procedure is described in
Section “4.6 VLAN Trunking Protocol (VTP) Attack” in the paper “Virtual LAN Security: weaknesses
and countermeasures” [80 Ch. 4.6].

However, to make use of this attack we would need access to a layer 2 trunk port of the previous
owner’s network. A trunk port is used to carry VLAN traffic between switches and should not be
possible to reach from a public space, such a lobby, via WIFI, or from an Internet Service Provider.
However, according to a Cisco manual the default mode for all LAN ports is to be configured in a
state called “switchport dynamic desirable”:

Investigation of sanitization completeness | 55

“Makes the LAN port actively attempt to convert the link to a trunk link. The LAN port
becomes a trunk port if the neighboring LAN port is set to trunk, desirable, or auto mode.”
[85 Table 17-2 Layer 2 LAN Port Modes]

Therefore, if the switch administrator forgot to actively disable this default setting, the port can
become a trunk port and a VTP attack is possible.

Would it be possible to do a VTP attack over the internet into a target LAN? It is difficult, but
maybe be possible. Andrea Barisani & Daniele Bianco showed at the BlackHat conference 2013 that
an arbitrary Ethernet frame can be injected over the internet, via routers and firewalls, into a
LAN [86]. They constructed a normal IP packet, such as an ICMP Echo reply (“ping”) packet, but
with a crafted payload that looked like an Ethernet frame. If the switch port happens to restart while
this packet was in transit “on the wire” the port might start its frame synchronization algorithm in
the payload, then find the maliciously embedded frame and treat it as a valid Ethernet frame. In the
general case an outside attacker does not know the destination MAC addresses inside the target
LAN which makes this attack difficult. However, the VTP protocol uses a fixed destination MAC
address of “01-00-0C-CC-CC-CC” [87]. If the switchport would restart in trunk mode and accept a
VTP frame injected as payload over the internet as the first packet on the restarted port, this exploit
is theoretically possible to carryout, even remotely over the internet. Confirming this type of attack
is left for future research.

4.1.8.2 Summary of sanitization using vendor factory reset commands.

The vendor sanitization commands of a CISCO 1712/K9 with IOS “C1700-K9O3SY7-M, Version
12.3(2)XF” erased the startup- configuration in NVRAM. The environmental variables in NVRAM
were left and as well as flash files such as the vlan.dat. Table 4-13 shows the results.

Several blogs and end user recommendations advise removing the vlan.dat file as part of the
sanitization process (for example [88] and [89]) and even the vendor underlines the important of
this in their switch documentation [90]. However, they advise the use of the command “delete
flash:/vlan.dat”. From our previous examination of the CISCO 1712 file system (see Section 4.1.3.6)
we learned that that command only flags the file as deleted, but does not actually remove any data,
hence simply executing this command is insufficient.

I eventually found a note deep down in the vendor documentation about configuration
management [91Para. Specifying the Startup Configuration File]: stating that the command
“squeeze” has to be used to reclaim the flash space after erasing the startup-config from there. The
advice is for reclaiming storage rather than a sanitization advice, but it gives a hint what we need to
do to sanitize the router from the vlan.dat file.

I ran the “delete flash:/vlan.dat” command followed by a “squeeze flash:”. After that, I dumped
the full 32MB flash memory contents from Rommon/Priv mode. The VTP marker inside the
VLAN.dat could not be found, so the delete and squeeze combination seems to be sufficient.

The overall assessment of the vendor erase routine is that it overwrites the startup-config in
NVRAM correctly. It leaves the environmental variables intact, but that is a minor problem as they
do not contain very sensitive information. Unfortunately, the flash memory is left intact; therefore,
it is up to the user to delete any files that contain sensitive information (such as vlan.dat and config
backups) and to actually overwrite these files using the “squeeze” command.

56 | Investigation of sanitization completeness

Table 4-13: Sanitization results of the CISCO1712

Parameter to
host marker

Parameter
storage

Storage
size to
search

Result Evidence
Strength

Security
severity
assessment

SNMP
password

NVRAM
(startup-config)

32KB Erased by
CISCO_IOS_1
and /or
CISCO_IOS_2

Not calculated

VTP
Password

flash:/vlan.dat 32MB Not erased by
either
CISCO_IOS_1
or
CISCO_IOS_2

1 - 2*10-10 Severe

TFTP_FILE NVRAM (env
variable)

32KB Not erased by
either
CISCO_IOS_1
or
CISCO_IOS_2

1 - 2*10-13 Negligible

Hostname NVRAM
(startup-config)

32KB Erased by
CISCO_IOS_1
and /or
CISCO_IOS_2

Not calculated

RSA key (512
bit)

NVRAM
(private-config)

32KB Erased by
CISCO_IOS_1
and /or
CISCO_IOS_2

Not calculated

4.1.8.3 IOS verification for NVRAM chip erase

Can we trust the NVRAM erase routine in the IOS to be foolproof? Does IOS actually verify that the
data is actually overwritten? Consider the fact that the NVRAM chip used in the CISCO 1712,
CAT 28C256-12, has a feature to disable all writes if the supply voltage falls below 3.5V.

I tested the IOS behavior by erasing the NVRAM chip with WE connected to Vcc*, that is
basically write protecting the chip. The normal behavior of a successful erase is shown in Output
listing 4-14. The result of the failed erase of the write protected NVRAM is shown in Output listing
4-15. There are three errors reported (highlighted in red), but in the end the notification “[OK]
Erase of nvram: complete” is printed, exactly as in the case of a successful erase. Thus if one has
designed an automated script to erase the NVRAM one must not trust the success string as proof
of NVRAM erasure.

* This could potentially damage any other driver output stage trying to drive WE to 0. However, in this case
everything recovered fine and the NVRAM could still be written to after Vcc was removed from the WE pin.

Investigation of sanitization completeness | 57

Output listing 4-14: Successfully erasing an NVRAM
Router#write erase

Erasing the nvram filesystem will remove all configuration files! Continue?
[confirm]

[OK]

Erase of nvram: complete

Router#

*Mar 1 00:19:34.799: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram

Output listing 4-15: Failing to erase an electrically write protected NVRAM

Router#write erase

Erasing the nvram filesystem will remove all configuration files! Continue?
[confirm]

EEPROM byte write error - timeout

EEPROM byte write error - timeout

EEPROM write error - timeout[OK]

Erase of nvram: complete

Router#

*Mar 1 00:18:41.299: %SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram

4.2 Sanitization investigation of a HP ProCurve Switch 2626

This section will look into the sanitization of a HP ProCurve Switch 2626 (Part number J4900A).

 Switch overview and interfaces 4.2.1

According to the vendors’ Installation and getting started guide:

“The HP ProCurve Switch 2600 Series devices are multiport switches that can be used to
build high-performance switched workgroup networks”[88 pp. 1–1]

This switch has 24 10/100BaseT ports and two Gigabit Ethernet ports. A RS-232 asynchronous
serial interface on the back of the switch can be used for configuration. The front panel has a “port
LED View” button to control the meaning of the LEDs above the ports. Additionally, there are
recessed “reset” and “clear” buttons.

 Hardware investigation 4.2.2

Figure 4-14 below shows the front of the switch. The main logic board with interesting parts marked
is shown in Figure 4-15 with explanations given in Table 4-14.

Figure 4-14: Front of HP ProCurve Switch 2626 (Part number J4900A)

58 | Investigation of sanitization completeness

Table 4-14: Interesting components of the Procurve 2626 mainboard

Object
Number Description

1 2 x 8 pin header labeled J3
2 A Motorola MPC8245 CPU
3 AMD Am29LV065D 8MByte flash
4 8 pin header labeled RP27(with pin 5 removed)
5 2 x 5 pin header labeled J4 with pairs of header pins labeled Debug, Bench and Dump
6 Solder pads labeled D3, D4, D5, D6

7 2 Lattice ispLSI5128VE programmable logic devices labeled“U21-18 V1.00” and “U22-
18 V1-00”

8 U15 TI 16C752B Dual UART

Both the CPU and the Lattice chips are JTAG compatible according to their documentation
[93][94]. I ran the JTAGulator on all the pins of object 1 (J3) and 4 (RP27) but it could not locate
any JTAG TAP interface. One can note that the header object 5 is labeled RP27, just like the
resistors close to the CPU, so perhaps it is intended to host resistors for in circuit programming of
the Lattice chips.

All the right side pins of the J4 header (object 5) were ground so I concluded they were a jumper
pin block to signal settings. Booting the device with the Debug jumper in place generated the
terminal output shown in

Investigation of sanitization completeness | 59

Output listing 4-16, so the device seems to be waiting for a remote debugger to connect.

The ribbon cables connect the serial port and a daughter card with the front push buttons.

Figure 4-15: Main board ProCurve Switch 2626 (J4900A)

60 | Investigation of sanitization completeness

Output listing 4-16: Debug jumper

ROM information:

 Build directory: /sw/rom/build/fishrom(f04)

 Build date: Jul 21 2004

 Build time: 10:45:52

 Build version: H.08.02

 Build number: 137

OS identifier found at @ 0x7cb80000

Verifying Image validity ...

CRC on OS image header Passed

CRC on complete OS image file Passed

Valid OS image @ 0x7cb80000

Decompressing...done.

Answer the following questions:

Switch startup, use Debugger (y or n)? Y

System level debug session (y or n)? Y

System stopped

Bring up GDB and do a "attach system"

Booting with the “Bench” jumper activates a large number of extra commands. These
commands can be seen in Output listing 6-8 in Appendix D. The commands starting with capital
letters are the extra Bench mode commands. It is also possible to enable the same “bench” mode
command set from the CLI (without the jumper) by executing the command “edomtset” twice*. [95].
And also to execute the “streboot” command. Benchmode is similar to the Cisco Rommon Priv mode
with the exception that the command software here is part of the main executable file.

Booting with the “Dump” jumper looks quite similar to booting normally, except it is not
possible to enter the main CLI by hitting enter twice. I do not know what this mode does. The UART
used (object 8) is actually a dual port UART which seems unnecessary for controlling only a single
user serial port [96]. Perhaps there is an internal UART serial interface which can be enabled to
connect a debugger or to program the Lattice chips. However, the JTAGulator UART scanner
function could not locate send and receive pins.

The device can store two executable images: primary and secondary. A ROM Monitor console
allows selection of one of the two. There is also an xmodem download function (in case both images
are somehow deleted). However, this monitor does not seem to have any memory manipulation
routines, unlike the Cisco ROM Monitor. The Rommonitor is accessed by pressing the “reset” button
on the front panel or by rebooting the switch with the “update” command.

* Testmode spelled backwards.

Investigation of sanitization completeness | 61

Output listing 4-17: ProCurve Switch 2626 ROM Monitor console
ProCurve Switch 2626# update

The device will be rebooted to Monitor ROM Console.

This will take the switch offline and allow only direct console access.

Do you want to continue [y/n]?

Enter h or ? for help.

=>?

LAN Monitor Commands

 do(wnload) - Download via Xmodem

 sp(eed) <baud> - Set a new baud rate

 h(elp) - Display help screen

 ? - Display help screen

 id(entify) - Print out identification string

 jp(jump) <1|2> - Jump to product code, optional 1-primary, 2-secondary

 q(uit) - Exit the monitor

 boot - Reboot the system

 reset - Reset the system

 v(ersion) - Display version information

62 | Investigation of sanitization completeness

 File system structure investigation 4.2.3

When booting the switch it reveals it finds a valid OS image at address 0x7cb80000 (Output
listing 4-16). We assume this address is inside the 8 MB flash address range, thus we can expect to
find a file header there indicating an executable file. The bench mode commands include read,
write, and fill memory manipulation routines (Output listing 4-18). There is also a command to
explore the file system called fs (Output listing 4-19). The result of the fs command with various
options can be found in Output listing 6-9 in Appendix D.

Output listing 4-18: ProCurve Switch 2626 Bench mode memory manipulation commands

Read Read memory: r [MOPT] <ADDR>

WR Write memory: w [MOPT] <ADDR> <VALUE>

FILL Fill memory: fill [MOPT] <ADDR> <ADDR> <VALUE>

SMode Set Memory Mode: sm [-l<READ_LENGTH> -b -h -w -a<bhw>

 -d<bhw> -n -i -c -s] Set default memory operation modes

 (MOPT).

Output listing 4-19: ProCurve Switch 2626 Bench mode fs command

ProCurve Switch 2626$ fs

Usage: fs cat FILENAME :: print file to stdout

 cp OLDFILE NEWFILE :: copy file

 ll PATHNAME :: file or dir listing

 ln -s OLDPATH NEWPATH :: create symlink

 ls PATHNAME :: file or dir listing

 od FILENAME :: od -x file to stdout

 nvfswalk :: walk flash file system

 pnbfswalk :: walk pnbfs file system

 ramfswalk :: walk ramfs file system

 rm FILENAME :: remove file

I believe that the filesystem works as follows. The area called pnbfs holds the logical structure of
the file system, as seen by the OS. This is a directory structure of real and virtual files. For instance,
it is possible to read the contents of the file “os/primary” using the “fs od” command. Output listing
4-20 shows what the executable file header looks like. The filetable seems to start at address
0x14f5178. This is far from the flash address at 0x7cb80000 so it might be a structure built
dynamically at boot time and stored in RAM.

Investigation of sanitization completeness | 63

Output listing 4-20: ProCurve Switch 2626 Bench mode command “fs od os/primary”
roCurve Switch 2626$ fs od os/primary

00000000 40 28 23 29 20 48 50 20 4a 34 38 39 39 43 20 4a @(#) HP J4899C J

00000010 34 38 39 39 41 20 4a 34 39 30 30 41 20 4a 38 31 4899A J4900A J81

00000020 36 35 41 20 4a 38 31 36 34 41 20 4a 34 38 39 39 65A J8164A J4899

00000030 42 20 4a 34 39 30 30 42 20 4a 38 37 36 32 41 20 B J4900B J8762A

00000040 4a 34 39 30 30 43 20 48 4d 44 4c 30 32 20 0d 0a J4900C HMDL02 ..

00000050 40 28 23 29 20 44 6f 77 6e 6c 6f 61 64 20 46 69 @(#) Download Fi

00000060 6c 65 20 31 30 2f 30 39 2f 30 37 20 34 37 34 30 le 10/09/07 4740

00000070 20 48 2e 31 30 2e 35 30 20 20 42 75 69 6c 64 23 H.10.50 Build#

00000080 20 20 20 33 35 39 20 20 20 20 20 20 20 20 20 20 359

00000090 20 20 20 78 78 78 78 78 2d 78 78 78 78 78 20 30 xxxxx-xxxxx 0

000000a0 30 30 31 20 30 30 30 33 20 0d 0a 40 28 23 29 20 001 0003 ..@(#)

000000b0 43 6f 6d 70 61 74 69 62 6c 65 20 52 4f 4d 20 47 Compatible ROM G

000000c0 2e 30 36 2e 58 58 20 20 20 20 30 30 20 0d 0a 1a .06.XX 00 ...

000000d0 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 .

000000e0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

000000f0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

00000100 5f 4f 53 77 00 34 60 0d 47 0b fa e5 00 00 00 05 _OSw.4`.G.......

00000110 ea 7a f5 66 00 00 00 02 00 00 01 3c 00 00 00 01 .z.f.......<....

00000120 00 01 33 88 10 00 00 00 00 32 1f 89 00 00 50 44 ..3......2....PD

00000130 00 32 23 dd 00 00 33 42 00 33 3d 7e 00 00 03 22 .2#...3B.3=~..."

00000140 0b ad ad d2 00 01 32 2c 00 01 32 2c 97 5e 3e f0 2,..2,.^>.

<snip>

The command “fs ls flash” shows the non-volatile files stored in a part of the flash memory
dedicated to config files and similar files.

Output listing 4-21: ProCurve Switch 2626 Bench mode “fs ls flash” command

ProCurve Switch 2626$ fs ls flash

Name Size Date

---------------- ------ -----------------

 .bootblock 1248 02/06/26 06:28:15

 mgrinfo.txt 96 01/01/90 00:00:21

 config.txt 6555 01/01/90 00:00:05

 iflags 50 01/01/90 00:00:14

 rbtcnt 4 01/01/90 00:00:05

The command “fs nvfswalk” shows the underlying file system structure that is used to store the
config files shown in Output listing 4-21. Output listing 4-22 shows the first (active) file in the list
called .bootblock and inactive (i.e. deleted) versions of the files called rbtcnt and iflags. The full
output of the file system commands can be found in Output listing 6-9 in Appendix D. That listing
shows the large number of old deleted files that can be found in a real decommissioned switch. A file
is represented by an address block containing a start address, the file name, size, date, and flag field.
Two stars in the “A” column seem to indicate which blocks are active (Output listing 4-22).

64 | Investigation of sanitization completeness

Output listing 4-22: Procurve “fs nvfswalk” output examples
fs nvfswalk

ProCurve Switch 2626$ fs nvfswalk

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

 ** 0x7cf20000 .bootblock 000004e0 ffffffff ffff

 0x7cf20500 rbtcnt 00000004 00000002 ffff

 0x7cf20530 rbtcnt 00000004 00000002 ffff

 0x7cf20560 iflags 00000032 00000006 ffff

 0x7cf205c0 rbtcnt 00000004 00000002 ffff

<snip>

The memory blocks are organized in a linked list structure with a 32 byte header followed by the
data. Each header is aligned to an even 16byte boundary. In our case the first memory block is the
active block named “.bootblock” at address 0x7cf20000. An example of a file header can be seen
starting at address 0x7cf54690 in Output listing 4-26. Table 4-15 is my estimate of the memory
blocks of header information prepending a data portion.

Table 4-15: ProCurve Switch 2626 file system header field structure prepending data

Fieldname Length [bytes] Comment

File name (null terminated) 16 (including NULL)

Size (in bytes) 4 Size of the data field

Date 4 Unknown format

Address of next block 4 FF FF FF FF if no next block (I.e. this
block is last in list)

Active/inactive flag 2 0x0000 mean inactive

0x00FF means active

Flags 2 Unknown use.

Seems to always be 0xFFFF.

Data contents According to length
field

Investigation of sanitization completeness | 65

Since flash can be programmed “1” to “0” a block can be flagged erased and a new block linked
in by rewriting the next block pointer. This is my guess of what is happening when a file is
“overwritten” with new contents.

1) The linked list is searched for the block which is active and has the file name. The
active/inactive flag is programmed from 0x00FF to 0x0000.

2) A new block is created after the last current block. The new block is set to active, and with a
next block pointer of 0xFFFFFFFF. The previous last block next pointer (0xFFFFFFFF) is
reprogrammed to point to the newly created block.

Similar to the Cisco flash file system investigated in Section 4.1.3.7, a file can be flagged deleted
without erasing the flash. The interesting question from a sanitization perspective is whether the old
block data content is properly sanitized. This will be investigated in Section 4.2.6.

 Flash memory address region 4.2.4

For forensic purposes it would be useful to extract the whole contents of the flash chip. The flash
chip in this particular switch model is an 8MB AMD Am29LV065D. We know that the address
0x7cb80000 is inside the flash memory region (Output listing 4-16). 0x7cb80000 is on an even
8MB boundary so perhaps that would be the flash base address. Playing around with the read and
write commands verified that assumption (Output listing 4-23):

• There is some old boot “ROM” code at the base address.

• Reading the last byte of the assumed flash region, 0x7cFFFFFF, works. However,
reading the next byte causes a switch reset.

• Reading 256 bytes before the base address (0x7c7FFF00) works, but returns only 0xFF.

With the knowledge of the flash range, we can construct a tool to read out the entire flash (see
Chapter 5). This can also be done by desoldering the chip itself and placing it in an external flash
programmer.

66 | Investigation of sanitization completeness

Output listing 4-23 Investigation of the Procurve 2626 flash memory region
ProCurve Switch 2626# edomtset

ProCurve Switch 2626# edomtset

ProCurve Switch 2626$ sm -b -i

 access:b, display:b, read_length:256, inc addr after read

ProCurve Switch 2626$

ProCurve Switch 2626$

ProCurve Switch 2626$

ProCurve Switch 2626$

ProCurve Switch 2626$ sm -b -i

 access:b, display:b, read_length:256, inc addr after read

ProCurve Switch 2626$ read 0x7c800000

7c800000 40 28 23 29 20 48 50 20 4a 34 38 39 39 41 20 4a @(#) HP J4899A J

7c800010 34 39 30 32 41 20 4a 34 39 30 30 41 20 20 20 20 4902A J4900A

7c800020 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

7c800030 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

7c800040 20 20 20 20 20 20 20 48 4d 44 4c 30 32 20 0d 0a HMDL02 ..

7c800050 40 28 23 29 20 44 6f 77 6e 6c 6f 61 64 20 46 69 @(#) Download Fi

7c800060 6c 65 20 30 35 2f 31 39 2f 30 33 20 34 33 32 30 le 05/19/03 4320

7c800070 20 48 2e 30 37 2e 33 31 20 42 75 69 6c 64 23 20 H.07.31 Build#

7c800080 20 20 20 37 37 20 20 20 20 20 20 20 20 20 20 20 77

7c800090 20 20 78 78 78 78 78 2d 78 78 78 78 78 20 30 30 xxxxx-xxxxx 00

7c8000a0 30 31 20 30 30 30 33 20 0d 0a 40 28 23 29 20 43 01 0003 ..@(#) C

7c8000b0 6f 6d 70 61 74 69 62 6c 65 20 52 4f 4d 20 47 2e ompatible ROM G.

7c8000c0 30 36 2e 58 58 20 20 20 20 30 30 20 0d 0a 1a 00 06.XX 00

7c8000d0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

7c8000e0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

7c8000f0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 .

ProCurve Switch 2626$ sm -l1 -b -i

 access:b, display:b, read_length:1, inc addr after read

ProCurve Switch 2626$ read 0x7cFFFFFF

7cffffff ff .

ProCurve Switch 2626$ sm -l256 -b -i

 access:b, display:b, read_length:256, inc addr after read

ProCurve Switch 2626$ read 0x7c7FFF00

7c7fff00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff10 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff20 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff30 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff40 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff50 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff60 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff70 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff80 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fff90 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fffa0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fffb0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fffc0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fffd0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7fffe0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

7c7ffff0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Investigation of sanitization completeness | 67

ProCurve Switch 2626$ sm -l1 -b -i

 access:b, display:b, read_length:1, inc addr after read

ProCurve Switch 2626$ read 0x7d000000

<causes switch reboot>

 ProCurve Switch 2626 configuration interface 4.2.5

At boot time the user is presented with a command line interface (CLI). As with the Cisco CLI there
are different levels of user privileges. The initial “Operator” privilege level can see, but not change
the configuration. Entering the command “enable” (and a password if set) the user enters
“Manager” privilege level in which they can enter configuration mode with the “config” command. A
terminal GUI utility can be started with the “menu” command. This GUI allows management of a
subset of the switch’s functions and parameters without requiring knowledge of the CLI syntax. [97]

 Investigating ProCurve Switch 2626 sanitization completeness 4.2.6

The markers in Table 4-16 were set using the CLI configuration mode and saved with the
command “write memory”. A crypto key was generate with the command “crypto key generate ssh
rsa”. Where did the switch store these settings? Output listing 4-24 is the output of the “show
config” command which reveals the hostname and SNMP password markers, but not the crypto key
or the manager password.

Table 4-16: ProCurve Switch 2626 markers

Parameter to host marker String marker
(10 random chars)

SNMP password MARKZlUXIlNsfl

Manager password MARKnyghQTEhTy

Hostname MARKCGsXAGvSiH

Output listing 4-24: show config, before erase
MARKCGsXAGvSiH$ show config

Startup configuration:

; J4900A Configuration Editor; Created on release #H.10.50

hostname "MARKCGsXAGvSiH"

snmp-server community "public" Unrestricted

snmp-server community "MARKZlUXIlNsfl" Operator

vlan 1

 name "DEFAULT_VLAN"

 untagged 1-26

 ip address dhcp-bootp

 exit

password manager

68 | Investigation of sanitization completeness

Output listing 4-25 shows the active files. Inspecting the address of each of them, we can see
that the SNMP password and hostname ended up in the file called “delta”. It seems the file config.txt
contains the default configuration and the changes are in the delta file (see Output listing 4-26).

Output listing 4-25: fs nvfswalk, before erase

MARKCGsXAGvSiH$ fs nvfswalk

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

 ** 0x7cf20000 .bootblock 000004e0 ffffffff ffff

<snip>

 ** 0x7cf4d6d0 iflags 00000032 0000000e ffff

<snip>

 ** 0x7cf50180 rbtcnt 00000004 00000005 ffff

<snip>

 ** 0x7cf52a50 config.txt 0000199b 00000005 ffff

 ** 0x7cf54410 mgrinfo.txt 00000060 000001e3 ffff

 ** 0x7cf54490 host_ssh1 000001d4 000001e8 ffff

 ** 0x7cf54690 delta 00002800 000001ee ffff

MARKCGsXAGvSiH$

Investigation of sanitization completeness | 69

Output listing 4-26: delta file, before erase
MARKCGsXAGvSiH$ read 0x7cf54690

7cf54690 64 65 6c 74 61 00 ff ff ff ff ff ff ff ff ff ff delta...........

7cf546a0 00 00 28 00 00 00 01 ee ff ff ff ff 00 ff ff ff ..(.............

7cf546b0 02 00 04 00 16 4e 41 4d 45 3d 7e 4d 41 52 4b 43 NAME=~MARKC
7cf546c0 47 73 58 41 47 76 53 69 48 7e 0a 00 01 ed 00 01 GsXAGvSiH~......

7cf546d0 0a 00 01 ed 00 0d 53 4e 4d 50 4e 4f 54 49 46 59 SNMPNOTIFY

7cf546e0 20 28 0a 00 01 ed 00 0d 52 4f 57 5f 53 54 41 54 (......ROW_STAT

7cf546f0 55 53 3d 31 0a 00 01 ed 00 12 4e 41 4d 45 3d 7e US=1......NAME=~

7cf54700 73 74 61 63 6b 74 72 61 70 73 7e 0a 00 01 ed 00 stacktraps~.....

7cf54710 0e 54 41 47 3d 73 74 61 63 6b 74 72 61 70 0a 00 .TAG=stacktrap..

7cf54720 01 ed 00 0e 53 54 4f 52 41 47 45 54 59 50 45 3d STORAGETYPE=

7cf54730 35 0a 00 01 ef 00 12 53 4e 4d 50 56 33 43 4f 4d 5......SNMPV3COM

7cf54740 4d 55 4e 49 54 59 20 28 0a 00 01 ef 00 0d 52 4f MUNITY (......RO

7cf54750 57 5f 53 54 41 54 55 53 3d 31 0a 00 01 ef 00 09 W_STATUS=1......

7cf54760 4e 41 4d 45 3d 7e 31 7e 0a 00 01 ef 00 13 43 4f NAME=~1~......CO

7cf54770 4d 4d 5f 4e 41 4d 45 3d 7e 70 75 62 6c 69 63 7e MM_NAME=~public~

7cf54780 0a 00 01 ef 00 25 53 45 43 5f 4e 41 4d 45 3d 7e %SEC_NAME=~

MARKCGsXAGvSiH$ read

7cf54790 43 6f 6d 6d 75 6e 69 74 79 4d 61 6e 61 67 65 72 CommunityManager

7cf547a0 52 65 61 64 57 72 69 74 65 7e 0a 00 01 ef 00 0e ReadWrite~......

7cf547b0 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 01 STORAGETYPE=2...

7cf547c0 ef 00 02 29 0a 00 01 ef 00 01 0a 00 01 ef 00 12 ...)............

7cf547d0 53 4e 4d 50 56 33 43 4f 4d 4d 55 4e 49 54 59 20 SNMPV3COMMUNITY

7cf547e0 28 0a 00 01 ef 00 0d 52 4f 57 5f 53 54 41 54 55 (......ROW_STATU

7cf547f0 53 3d 31 0a 00 01 ef 00 09 4e 41 4d 45 3d 7e 32 S=1......NAME=~2

7cf54800 7e 0a 00 01 ef 00 1b 43 4f 4d 4d 5f 4e 41 4d 45 ~......COMM_NAME

7cf54810 3d 7e 4d 41 52 4b 5a 6c 55 58 49 6c 4e 73 66 6c =~MARKZlUXIlNsfl

7cf54820 7e 0a 00 01 ef 00 25 53 45 43 5f 4e 41 4d 45 3d ~.....%SEC_NAME=

7cf54830 7e 43 6f 6d 6d 75 6e 69 74 79 4f 70 65 72 61 74 ~CommunityOperat

7cf54840 6f 72 52 65 61 64 4f 6e 6c 79 7e 0a 00 01 ef 00 orReadOnly~.....

7cf54850 0e 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 .STORAGETYPE=2..

7cf54860 01 ef 00 02 29 0a 00 01 ef 00 02 29 0a 00 01 ef )......)....

7cf54870 00 01 0a 00 01 f5 00 08 53 4e 4d 50 53 20 28 0a SNMPS (.

7cf54880 00 01 f5 00 0d 52 4f 57 5f 53 54 41 54 55 53 3d ROW_STATUS=

MARKCGsXAGvSiH$ read

7cf54890 31 0a 00 01 f5 00 09 43 4f 4d 5f 49 44 3d 32 0a 1......COM_ID=2.

7cf548a0 00 01 f5 00 16 4e 41 4d 45 3d 7e 4d 41 52 4b 5a NAME=~MARKZ

7cf548b0 6c 55 58 49 6c 4e 73 66 6c 7e 0a 00 01 f5 00 07 lUXIlNsfl~......

7cf548c0 56 49 45 57 3d 33 0a 00 01 f5 00 02 29 0a 00 01 VIEW=3......)...

7cf548d0 f5 00 01 0a 00 03 3e 00 0d 44 48 43 50 53 4e 4f >..DHCPSNO

7cf548e0 4f 50 72 20 28 0a 00 03 3e 00 0d 52 4f 57 5f 53 OPr (...>..ROW_S

7cf548f0 54 41 54 55 53 3d 33 0a 00 03 3e 00 02 29 0a 00 TATUS=3...>..)..

7cf54900 03 3e 00 01 0a fe ff ff ff ff ff ff ff ff ff ff .>..............

7cf54910 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

70 | Investigation of sanitization completeness

The manager password ended up in the file called mgrinfo.txt, as shown in Output listing 4-27.

Output listing 4-27: mgrinfo.txt, before erase

ARKCGsXAGvSiH$ read 0x7cf54410

7cf54410 6d 67 72 69 6e 66 6f 2e 74 78 74 00 ff ff ff ff mgrinfo.txt.....

7cf54420 00 00 00 60 00 00 01 e3 7c f5 44 90 00 ff ff ff ...`....|.D.....

7cf54430 00 00 00 01 46 4c 47 00 4d 41 52 4b 6e 79 67 68 FLG.MARKnygh

7cf54440 51 54 45 68 54 79 00 00 00 00 00 00 00 00 00 00 QTEhTy..........

7cf54450 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff fb

7cf54460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7cf54470 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7cf54480 00 00 00 00 00 00 00 00 00 00 00 02 06 00 00 00

The ssh key ended up in the file called host_ssh1, as shown in Output listing 4-28.

Output listing 4-28: host_ssh1 file, before erase

7cf54490 68 6f 73 74 5f 73 73 68 31 00 ff ff ff ff ff ff host_ssh1.......

7cf544a0 00 00 01 d4 00 00 01 e8 7c f5 46 90 00 ff ff ff |.F.....

7cf544b0 53 53 48 20 50 52 49 56 41 54 45 20 4b 45 59 20 SSH PRIVATE KEY
7cf544c0 46 49 4c 45 20 46 4f 52 4d 41 54 20 31 2e 31 0a FILE FORMAT 1.1.
7cf544d0 00 00 00 00 00 00 00 00 03 80 03 80 c2 e0 89 c1
7cf544e0 dd f6 ec c1 af 5d 75 47 63 b2 29 f0 0f 94 7f 6c ]uGc.)...l
7cf544f0 b7 76 fe 7d c0 d3 62 2d 13 6b a1 33 b2 b1 a1 12 .v.}..b-.k.3....
7cf54500 0f 2e 9c b0 f0 a8 45 a7 00 2c 5f 18 7d 19 c0 a4 E..,_.}...
7cf54510 93 a3 17 76 d3 b9 d5 c4 df 67 93 1e a7 ce ab 86 ...v.....g......
7cf54520 27 36 d6 5b 54 08 b4 2e 0f 82 29 66 a2 1d 86 21 '6.[T.....)f...!
7cf54530 70 7e d1 58 68 90 f5 fd fa d5 f0 b3 42 b7 ba 81 p~.Xh.......B...
7cf54540 92 08 ab 2d 68 26 35 4a 77 3f 2a 1d 00 06 23 00 ...-h&5Jw?*...#.

7cf54550 00 00 09 68 6f 73 74 5f 73 73 68 31 ee 3a ee 3a ...host_ssh1.:.:

7cf54560 03 7f 64 38 f6 63 b3 fb 55 30 68 d0 fa 7c 7c 6a .d8.c..U0h..||j

7cf54570 41 74 25 45 0e 55 2b 27 41 0d 79 1c 41 1e 7f 04 At%E.U+'A.y.A..

7cf54580 27 04 a5 0a e5 1f 3b 02 07 70 f0 cb 91 89 16 08 '.....;..p......

The switch was powered down by removing power. After restoring power, the switch booted up
again and asked for the manager password to enter the CLI enable mode and the hostname marker
was shown in the prompt. At this point, the factory reset procedure referred to as
HP_2626_BUTTON in Appendix A was performed (both front buttons push using two paper clips).
The switch rebooted and did not present a password or the marker prompt, indicating that the
factory reset seems to have done what it is intended to do. In addition, “show config” shows the
absences of the markers.

Investigation of sanitization completeness | 71

Output listing 4-29: show config, after erase
ProCurve Switch 2626# show config

Startup configuration:

; J4900A Configuration Editor; Created on release #H.10.50

hostname "ProCurve Switch 2626"

snmp-server community "public" Unrestricted

vlan 1

 name "DEFAULT_VLAN"

 untagged 1-26

 ip address dhcp-bootp

 exit

ProCurve Switch 2626#

The command “fs nvfswalk” shows that the previous delta file memory block at address 0x7cf54690
has been marked inactive, indicated by the absence of the “**” in the A column. However, inspecting
the actual memory contents shows that the hostname and SNMP markers are still present. This
output of both commands is shown in Output listing 4-30.

72 | Investigation of sanitization completeness

Output listing 4-30: delta file data, after erase
ProCurve Switch 2626$ fs nvfswalk

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

<SNIP>

 0x7cf54690 delta 00002800 000001ee ffff

 0x7cf56eb0 rbtcnt 00000004 00000005 ffff

 0x7cf56ee0 mgrinfo.txt 00000060 00000163 ffff

 ** 0x7cf56f60 rbtcnt 00000004 00000005 ffff

 ** 0x7cf56f90 mgrinfo.txt 00000060 00000005 ffff

 0x7cf57010 delta 00002800 00000005 ffff

 ** 0x7cf59830 config.txt 0000199b 00000005 ffff

ProCurve Switch 2626$ read 0x7cf54690

7cf54690 64 65 6c 74 61 00 ff ff ff ff ff ff ff ff ff ff delta...........

7cf546a0 00 00 28 00 00 00 01 ee 7c f5 6e b0 00 00 ff ff ..(.....|.n.....

7cf546b0 02 00 04 00 16 4e 41 4d 45 3d 7e 4d 41 52 4b 43 NAME=~MARKC
7cf546c0 47 73 58 41 47 76 53 69 48 7e 0a 00 01 ed 00 01 GsXAGvSiH~......

7cf546d0 0a 00 01 ed 00 0d 53 4e 4d 50 4e 4f 54 49 46 59 SNMPNOTIFY

7cf546e0 20 28 0a 00 01 ed 00 0d 52 4f 57 5f 53 54 41 54 (......ROW_STAT

7cf546f0 55 53 3d 31 0a 00 01 ed 00 12 4e 41 4d 45 3d 7e US=1......NAME=~

7cf54700 73 74 61 63 6b 74 72 61 70 73 7e 0a 00 01 ed 00 stacktraps~.....

7cf54710 0e 54 41 47 3d 73 74 61 63 6b 74 72 61 70 0a 00 .TAG=stacktrap..

7cf54720 01 ed 00 0e 53 54 4f 52 41 47 45 54 59 50 45 3d STORAGETYPE=

7cf54730 35 0a 00 01 ef 00 12 53 4e 4d 50 56 33 43 4f 4d 5......SNMPV3COM

7cf54740 4d 55 4e 49 54 59 20 28 0a 00 01 ef 00 0d 52 4f MUNITY (......RO

7cf54750 57 5f 53 54 41 54 55 53 3d 31 0a 00 01 ef 00 09 W_STATUS=1......

7cf54760 4e 41 4d 45 3d 7e 31 7e 0a 00 01 ef 00 13 43 4f NAME=~1~......CO

7cf54770 4d 4d 5f 4e 41 4d 45 3d 7e 70 75 62 6c 69 63 7e MM_NAME=~public~

7cf54780 0a 00 01 ef 00 25 53 45 43 5f 4e 41 4d 45 3d 7e %SEC_NAME=~

ProCurve Switch 2626$ read

7cf54790 43 6f 6d 6d 75 6e 69 74 79 4d 61 6e 61 67 65 72 CommunityManager

7cf547a0 52 65 61 64 57 72 69 74 65 7e 0a 00 01 ef 00 0e ReadWrite~......

7cf547b0 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 01 STORAGETYPE=2...

7cf547c0 ef 00 02 29 0a 00 01 ef 00 01 0a 00 01 ef 00 12 ...)............

7cf547d0 53 4e 4d 50 56 33 43 4f 4d 4d 55 4e 49 54 59 20 SNMPV3COMMUNITY

7cf547e0 28 0a 00 01 ef 00 0d 52 4f 57 5f 53 54 41 54 55 (......ROW_STATU

7cf547f0 53 3d 31 0a 00 01 ef 00 09 4e 41 4d 45 3d 7e 32 S=1......NAME=~2

7cf54800 7e 0a 00 01 ef 00 1b 43 4f 4d 4d 5f 4e 41 4d 45 ~......COMM_NAME

7cf54810 3d 7e 4d 41 52 4b 5a 6c 55 58 49 6c 4e 73 66 6c =~MARKZlUXIlNsfl

7cf54820 7e 0a 00 01 ef 00 25 53 45 43 5f 4e 41 4d 45 3d ~.....%SEC_NAME=

7cf54830 7e 43 6f 6d 6d 75 6e 69 74 79 4f 70 65 72 61 74 ~CommunityOperat

7cf54840 6f 72 52 65 61 64 4f 6e 6c 79 7e 0a 00 01 ef 00 orReadOnly~.....

7cf54850 0e 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 .STORAGETYPE=2..

7cf54860 01 ef 00 02 29 0a 00 01 ef 00 02 29 0a 00 01 ef )......)....

7cf54870 00 01 0a 00 01 f5 00 08 53 4e 4d 50 53 20 28 0a SNMPS (.

7cf54880 00 01 f5 00 0d 52 4f 57 5f 53 54 41 54 55 53 3d ROW_STATUS=

ProCurve Switch 2626$

Investigation of sanitization completeness | 73

Similarly, the manager password marker can be found in the old mgrinfo.txt file block (which
has also been flagged inactive). This is shown in Output listing 4-31.

Output listing 4-31: mgrinfo.txt data after erase

ProCurve Switch 2626$ fs nvfswalk

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

<SNIP>

 0x7cf54410 mgrinfo.txt 00000060 000001e3 ffff

 ** 0x7cf54490 host_ssh1 000001d4 000001e8 ffff

 0x7cf54690 delta 00002800 000001ee ffff

 0x7cf56eb0 rbtcnt 00000004 00000005 ffff

 0x7cf56ee0 mgrinfo.txt 00000060 00000163 ffff

 ** 0x7cf56f60 rbtcnt 00000004 00000005 ffff

 ** 0x7cf56f90 mgrinfo.txt 00000060 00000005 ffff

 0x7cf57010 delta 00002800 00000005 ffff

 ** 0x7cf59830 config.txt 0000199b 00000005 ffff

ProCurve Switch 2626$ read 0x7cf54410

7cf54410 6d 67 72 69 6e 66 6f 2e 74 78 74 00 ff ff ff ff mgrinfo.txt.....

7cf54420 00 00 00 60 00 00 01 e3 7c f5 44 90 00 00 ff ff ...`....|.D.....

7cf54430 00 00 00 01 46 4c 47 00 4d 41 52 4b 6e 79 67 68 FLG.MARKnygh
7cf54440 51 54 45 68 54 79 00 00 00 00 00 00 00 00 00 00 QTEhTy..........

7cf54450 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff fb

7cf54460 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7cf54470 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7cf54480 00 00 00 00 00 00 00 00 00 00 00 02 06 00 00 00

The private crypto key was originally stored in the file host_ssh1 at address 0x7cf54490. The
factory reset routine did not mark this memory block inactive, so the contents of this file is
completely intact and can even be listed using its original file name or read using memory
inspection. Output listing 4-32 shows the file contents of host_ssh1 after the factory reset
procedure.

74 | Investigation of sanitization completeness

Output listing 4-32: host_ssh1 file after erase
ProCurve Switch 2626$ fs od host_ssh1

00000000 53 53 48 20 50 52 49 56 41 54 45 20 4b 45 59 20 SSH PRIVATE KEY

00000010 46 49 4c 45 20 46 4f 52 4d 41 54 20 31 2e 31 0a FILE FORMAT 1.1.

00000020 00 00 00 00 00 00 00 00 03 80 03 80 c2 e0 89 c1

00000030 dd f6 ec c1 af 5d 75 47 63 b2 29 f0 0f 94 7f 6c ]uGc.)....l

00000040 b7 76 fe 7d c0 d3 62 2d 13 6b a1 33 b2 b1 a1 12 .v.}..b-.k.3....

00000050 0f 2e 9c b0 f0 a8 45 a7 00 2c 5f 18 7d 19 c0 a4 E..,_.}...

00000060 93 a3 17 76 d3 b9 d5 c4 df 67 93 1e a7 ce ab 86 ...v.....g......

00000070 27 36 d6 5b 54 08 b4 2e 0f 82 29 66 a2 1d 86 21 '6.[T.....)f...!

00000080 70 7e d1 58 68 90 f5 fd fa d5 f0 b3 42 b7 ba 81 p~.Xh.......B...

00000090 92 08 ab 2d 68 26 35 4a 77 3f 2a 1d 00 06 23 00 ...-h&5Jw?*...#.

<SNIP>

ProCurve Switch 2626$ read 0x7cf54490

7cf54490 68 6f 73 74 5f 73 73 68 31 00 ff ff ff ff ff ff host_ssh1.......

7cf544a0 00 00 01 d4 00 00 01 e8 7c f5 46 90 00 ff ff ff |.F.....

7cf544b0 53 53 48 20 50 52 49 56 41 54 45 20 4b 45 59 20 SSH PRIVATE KEY

7cf544c0 46 49 4c 45 20 46 4f 52 4d 41 54 20 31 2e 31 0a FILE FORMAT 1.1.

7cf544d0 00 00 00 00 00 00 00 00 03 80 03 80 c2 e0 89 c1

7cf544e0 dd f6 ec c1 af 5d 75 47 63 b2 29 f0 0f 94 7f 6c ]uGc.)...l

7cf544f0 b7 76 fe 7d c0 d3 62 2d 13 6b a1 33 b2 b1 a1 12 .v.}..b-.k.3....

7cf54500 0f 2e 9c b0 f0 a8 45 a7 00 2c 5f 18 7d 19 c0 a4 E..,_.}...

7cf54510 93 a3 17 76 d3 b9 d5 c4 df 67 93 1e a7 ce ab 86 ...v.....g......

7cf54520 27 36 d6 5b 54 08 b4 2e 0f 82 29 66 a2 1d 86 21 '6.[T.....)f...!

7cf54530 70 7e d1 58 68 90 f5 fd fa d5 f0 b3 42 b7 ba 81 p~.Xh.......B...

7cf54540 92 08 ab 2d 68 26 35 4a 77 3f 2a 1d 00 06 23 00 ...-h&5Jw?*...#.

ProCurve Switch 2626$

As we found all 3 markers and the crypto key after performing the HP_2626_BUTTON
procedure, it is apparent that the factory reset procedure did not actually sanitize the switch.
Perhaps we will be more successful sanitizing the switch with a second procedure. The “erase
startup-config” command was issued via the CLI according to the erase procedure HP_2626_CLI in
Appendix A and the switch was rebooted. Unfortunately, this procedure produces the same results,
i.e., all 3 markers and the crypto key were still present in their original memory locations.

4.2.6.1 Summary of sanitization using vendor factory reset commands.

The overall assessment of the vendor erase routines for the HP ProCurve Switch 2626 (Part
number J4900A) running Firmware: H.10.50 from Oct 9 2007 is summarized in Table 4-17. My
investigation of this switch showed that these procedures do not actually overwrite the sensitive
data. Not only is the last copy of the configuration stored, as the new delta configurations are
written to new flash regions, but the complete history of old config data may be present in the flash
memory. Perhaps the idea of utilizing delta files was to provide wear leveling. However, as the flash
chip datasheet [98] guarantees 1 million flash erase cycles and the flash region has to be erased
before storing something new, the old flash memory location could be immediately erased after
creating a new configuration. Note that 1 million flash cycles would correspond to 50 years of
operation at 50 changes in the configuration per day.

Investigation of sanitization completeness | 75

Table 4-17: Result of sanitization investigation of HP ProCurve Switch 2626 (Part number J4900A)

Parameter to
host marker

Parameter
storage

Storage
size to
search

Result Evidence
Strength

Security
severity
assessment

SNMP
password

Flash 8MB Not sanitized by
either procedure
HP_2626_BUTTON
or HP_2626_CLI

10 chars in
8MB =

1 - 6*10-11

Severe

Hostname Flash 8MB Not sanitized by
either procedure
HP_2626_BUTTON
or HP_2626_CLI

1 - 6*10-11 Severe

Manager
password

Flash 8MB Not sanitized by
either procedure
HP_2626_BUTTON
or HP_2626_CLI

1 - 6*10-11 Severe

4.2.6.2 A method to sanitize the switch configuration

It would be an easy task to write 0x00 to all bytes in the block at the same time it is flagged as
inactive. In fact we can perform this write ourselves using the memory manipulation routines the
vendor supplies. According to the datasheet flash programming is done by first writing the sequence
0xAA, 0x55, 0xA0 to any address. This is followed by writing the actual data to the address we want
to program. Flash can only be programmed by changing “ones to zeros”, but filling the relevant
portions of the memory with 0x00 is sufficient to sanitize the old configuration regions.

We can use the algorithm in Table 4-18 to erase inactive flash file regions. Output listing 4-33
shows how a byte of the manager password is cleared using the flash program algorithm. The header
of each file flash region might need to be left intact to avoid destroying the file system’s state.
Further details of this approach will be left for future work.

Table 4-18: Procurve 2626 configuration sanitization algorithm

FOR EACH ROW R IN “fs nvfswalk”

 If R.A is not “**” ; not active

 For (x = R.addr; x++; x<R.addr+ R.size

 wr x 0xAA

 wr x 0x55

 wr x 0xA0

 wr x 0x00

76 | Investigation of sanitization completeness

Output listing 4-33: Procurve 2626, proof of concept, byte erase in flash
ProCurve Switch 2626$ sm -b -i -l64

 access:b, display:b, read_length:64, inc addr after read

ProCurve Switch 2626$ read 7cf54438

7cf54438 4d 41 52 4b 6e 79 67 68 51 54 45 68 54 79 00 00 MARKnyghQTEhTy..

7cf54448 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7cf54458 00 00 00 00 ff ff ff fb 00 00 00 00 00 00 00 00

7cf54468 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

ProCurve Switch 2626$ wr 0x7cf54438 0xAA

ProCurve Switch 2626$ wr 0x7cf54438 0x55

ProCurve Switch 2626$ wr 0x7cf54438 0xA0

ProCurve Switch 2626$ wr 0x7cf54438 0x00

ProCurve Switch 2626$ read 0x7cf54438

7cf54438 00 41 52 4b 6e 79 67 68 51 54 45 68 54 79 00 00 .ARKnyghQTEhTy..

7cf54448 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7cf54458 00 00 00 00 ff ff ff fb 00 00 00 00 00 00 00 00

7cf54468 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

ProCurve Switch 2626$

4.3 Sanitization investigation of a HP ProCurve Switch 2824

Perhaps the poor sanitization result using the vendor commands for the Procurve 2626 was due to
some unlucky combination of old software and hardware. In this section we investigate a HP
Procurve 2824 (Part# J4903A) with software version I.10.105 with a build date of April 2014.

Figure 4-16: Front of ProCurve Switch 2824 (Part# J4903A)

Figure 4-17: Main board of ProCurve Switch 2824 (Part# J4903A)

Investigation of sanitization completeness | 77

Table 4-19: Interesting components of the Procurve 2824 mainboard

Object
Number Description

1 2 x 5 pin header labeled P6 with pairs of header pins labeled Debug, Bench and Dump

2 U2 AMD Flash chip labeled L065MU12RI and stamped 0B. Seems to be a 8MB flash
Am29LV065MU which are now called S29GL064A [99]

3 MPC8245LZU226 CPU

 Investigating ProCurve Switch 2824 sanitization completeness 4.3.1

The same procedure as applied to the Procurve 2626 case was used to inject several markers and
generate a crypto key. The markers used are shown in Table 4-20.

Table 4-20: ProCurve Switch 2824 markers

Parameter to host marker String marker
(10 random chars)

SNMP password MARKwBEKowbKRB

Manager password MARKcGsXAGVcIG

Hostname MARKtBHqwwEqpC

The latest manual listed on the vendor’s support page [100] for this switch is dated October
2005. This manual outlines the same two procedures for factory reset as used for the Procurve 2626
switch [101 Page C-43]. As such, we can apply the same two procedures, called HP_2626_CLI and
HP_2626_BUTTON in Appendix A.

The HP_2626_BUTTON procedure was performed followed by the HP_2626_CLI procedure.
After rebooting and trying to enter diagnostic mode a new legal message was displayed (shown in
Output listing 4-34). It seems to be difficult to use this mode on this switch and to include any
outputs in my thesis without upsetting the vendors’ legal department. In fact, the vendor by this
message also forbids end users using the “wr” command to properly sanitize the switch’s memory
themselves.

Output listing 4-34: ProCurve Switch 2824 diagnostic mode legal message

ProCurve Switch 2824# edomtset

ProCurve Switch 2824# edomtset

ATTENTION: You are entering a diagnostic mode on this product that is HP

Confidential and Proprietary. This mode, the commands and functionality

specific to this mode, and all output from this mode are HP Confidential

and Proprietary. You may use this mode only by specific permission of, and

under the direction of, an HP support engineer or HP technical engineer.

Unauthorized or improper use of this mode will be considered by HP to be

unauthorized modification of the product, and any resulting defects or

issues are not eligible for coverage under the HP product warranty or any

HP support or service. UNAUTHORIZED OR IMPROPER USE OF THIS MODE CAN

MAKE THE PRODUCT COMPLETELY INOPERABLE.

78 | Investigation of sanitization completeness

However, the vendor legal department forgot to add the message when booting with the “Bench”
jumper so I hope that I can still show (without risk of being sentenced to jail) that all of the markers
are still present after factory reset on this switch. I better whisper it: It’s in Output listing 6-10 in 0.

4.4 Sanitization investigation of a ProCurve Switch 2610-48

While working with the development of the sanitty utility (chapter 5) I discovered that a ProCurve
Switch 2610-48 (J9088A, Software revision R.11.54) had three new commands in
benchtest/edomtset mode:

Output listing 4-35: ProCurve 2610-48 new commands

 nvfserase Erase all files in filesystem

 nvfsfill Fill up the filesystem

 nvfsdir Display nvfs directory contents

After testing them, this is my interpretation of what they do (See Output listing 6-11 in Appendix
F):

• Nvfserase erases the nvfs portion of the flash (0xff), then initializes it with the first
.bootblock file node record to start the linked node list.

• Nvfsfill fills up the empty space of the nvfs area with a file “fill000”. The data contents
is repeating 0x00 0x01 … 0xff pattern. The command seems to do some tests as well,
perhaps to find bad blocks.

• Nvfsdir Displays a node listing similar to “fs nvfswalk”, but with some extra
information.

I repeated the same sanitization investigations method of the previous switches but also use the
nvfserase command. The markers in Table 4-21 were set. After that, the system was rebooted. The
password prompt was confirmed. Erase procedure HP_2626_BUTTON from Appendix A was
performed. This let us in without using password and our newly developed Sanitty tool (command
dumpnvfs) was used to read out the inactive nodes. All the markers could be found (see Output
listing 6-12, Appendix F). Same result after following up with the HP_2626_CLI procedure. But
after the nvfserase command (followed by a reboot) all memory locations previously holding the
markers were erased (now 0xff). Since this investigation was done after the creation of the Sanitty
tool I also dumped the entire 16MB flash (using the Sanitty dumpflash command). The markers
could not be found in any of the flash data.

So apparently this switch has a command to sanitize the whole nv fs area. Although it is hidden
and undocumented. The recommended erase routines still both leave the old config revisions intact
in flash.

Table 4-21: ProCurve Switch 2610-48 markers

Parameter to host marker String marker
(10 random chars)

SNMP password MARKwBEKowbKRB

Manager password MARKcGsXAGVcIG

Hostname MARKtBHqwwEqpC

Investigation of sanitization completeness | 79

4.5 HP Procurve physical access security

The document “Hardening ProCurve Switches” [102] suggests two commands to “fully secure the
device” and disable the factory reset using the front buttons:

ProCurve Switch(config)# no front-panel-security factory-reset

ProCurve Switch(config)# no front-panel-security password-clear

If a switch has a password set, would these commands make it impossible to disable the
password using the HP_2626_BUTTON “erase” procedure in Appendix A? This would effectively
prevent us from entering the CLI and edomtset mode, hence making it difficult to sanitize the
device. Additionally, from a security perspective it would prevent access to the sensitive data unless
the flash is physically removed and read in an external programmer.

The vendor’s document “Configuring Username and Password Security” addresses the concern
for physical access security when the device is installed in a non-secure location [103 pp. 2–9].

Let us test how this works. A HP Procurve J9088A Switch 2610-48 was prepared with the most
recent software revision (R.11.54) and three markers were generated and injected as hostname,
SNMP password, and manager password according to Table 4-22 and Output listing 4-36. The
switch was then restarted.

The two commands (shown above) worked as intended: The HP_2626_BUTTON “erase”
procedure involving the reset and clear buttons on the front would no longer let us bypass the
password, hence we could no longer enter into the CLI.

However, the physical security was only limited to the front buttons. The bench jumper on the
logic board still worked and made the switch boot into the bench mode without asking for password.
From there it was possible to extract all the markers as shown in Output listing 4-37.

So the physical access security commands do offer security by preventing a user with front panel
access to push the buttons and stop the operation of the switch. However, these do not protect any
sensitive data from being accessed from the flash by someone who has can open the switch up (a
process which takes less than a minute). Via the bench jumper all current and possibly the long
history of previous configurations and passwords are exposed, the later occurs due to the fact that
old information is kept intact in the flash.

For future releases, the vendor could implement disable of the bench jumper functionaility
when the front-panel-security is activated. However, from a refurbisher’s perspective it is annoying
to have to bypass strong password security. Furthermore, the data could probably still be read from
the flash if were to be desoldered or read via JTAG. Therefore, my advice to the vendor would be to
allow the use of the bench jumper, but to halt the boot process and display a message such as that
shown below. If the user enters “y”, then the configuration area of the flash should be securely
erased.

This device has front-panel-security activated. Continuing will sanitize (erase)
the configuration area of the flash. Do you want to continue [y/n]?

Table 4-22: Procurve Switch 2610-48 physical security test martkers

Parameter to host marker String marker
(10 random chars)

SNMP password MARKtiLrWdJSZJ

Manager password MARKBOOrEjmshO

Hostname MARKgScepSuzMT

80 | Investigation of sanitization completeness

Output listing 4-36: Procurve front panel security preparation
ProCurve Switch 2610-48(config)# hostname MARKgScepSuzMT
MARKgScepSuzMT(config)# snmp-server community MARKtiLrWdJSZJ

MARKgScepSuzMT(config)# password manager

New password for manager: **************

Please retype new password for manager: **************

DHCP based config file download from a TFTP server is disabled when an operator

or manager password is set.

MARKgScepSuzMT(config)# no front-panel-security factory-reset

 **** CAUTION ****

Disabling the factory reset option prevents switch configuation and passwords

from being easily reset or recovered. Ensure that you are familiar with the

front panel security options before proceeding.

Continue with disabling the factory reset option[y/n]? y

MARKgScepSuzMT(config)# no front-panel-security password-clear

 **** CAUTION ****

Disabling the clear button prevents switch passwords from being easily reset or

recovered. Ensure that you are familiar with the front panel security options

before proceeding.

Continue with disabling the clear button [y/n]? y

MARKgScepSuzMT(config)# crypto key generate ssh rsa

Installing new key pair. If the key/entropy cache is

depleted, this could take several minutes.

MARKgScepSuzMT(config)# write memory

Investigation of sanitization completeness | 81

Output listing 4-37: ProCurve Switch 2610-48 markers found in bench mode (red highlight)
MARKgScepSuzMT=> read 0xbcf96710

bcf96710 64 65 6c 74 61 00 ff ff ff ff ff ff ff ff ff ff delta...........

bcf96720 00 00 28 00 00 00 00 1f bc f9 8f 30 00 ff ff ff ..(........0....

bcf96730 00 02 89 00 01 0a 00 02 89 00 0d 53 4e 4d 50 4e SNMPN

bcf96740 4f 54 49 46 59 20 28 0a 00 02 89 00 0d 52 4f 57 OTIFY (......ROW

bcf96750 5f 53 54 41 54 55 53 3d 31 0a 00 02 89 00 12 4e _STATUS=1......N

bcf96760 41 4d 45 3d 7e 73 74 61 63 6b 74 72 61 70 73 7e AME=~stacktraps~

bcf96770 0a 00 02 89 00 0e 54 41 47 3d 73 74 61 63 6b 74 TAG=stackt

bcf96780 72 61 70 0a 00 02 89 00 0e 53 54 4f 52 41 47 45 rap......STORAGE

bcf96790 54 59 50 45 3d 35 0a 00 02 8b 00 12 53 4e 4d 50 TYPE=5......SNMP

bcf967a0 56 33 43 4f 4d 4d 55 4e 49 54 59 20 28 0a 00 02 V3COMMUNITY (...

bcf967b0 8b 00 0d 52 4f 57 5f 53 54 41 54 55 53 3d 31 0a ...ROW_STATUS=1.

bcf967c0 00 02 8b 00 09 4e 41 4d 45 3d 7e 31 7e 0a 00 02 NAME=~1~...

bcf967d0 8b 00 13 43 4f 4d 4d 5f 4e 41 4d 45 3d 7e 70 75 ...COMM_NAME=~pu

bcf967e0 62 6c 69 63 7e 0a 00 02 8b 00 25 53 45 43 5f 4e blic~.....%SEC_N

bcf967f0 41 4d 45 3d 7e 43 6f 6d 6d 75 6e 69 74 79 4d 61 AME=~CommunityMa

bcf96800 6e 61 67 65 72 52 65 61 64 57 72 69 74 65 7e 0a nagerReadWrite~.

MARKgScepSuzMT=> read

bcf96810 00 02 8b 00 0e 53 54 4f 52 41 47 45 54 59 50 45 STORAGETYPE

bcf96820 3d 32 0a 00 02 8b 00 02 29 0a 00 02 8b 00 02 29 =2......)......)

bcf96830 0a 00 02 8b 00 01 0a 00 03 da 00 0d 44 48 43 50 DHCP

bcf96840 53 4e 4f 4f 50 72 20 28 0a 00 03 da 00 0d 52 4f SNOOPr (......RO

bcf96850 57 5f 53 54 41 54 55 53 3d 33 0a 00 03 da 00 02 W_STATUS=3......

bcf96860 29 0a 00 03 da 00 01 0a fe 02 00 01 00 3c 3b 20)............<;

bcf96870 4a 39 30 38 38 41 20 43 6f 6e 66 69 67 75 72 61 J9088A Configura

bcf96880 74 69 6f 6e 20 45 64 69 74 6f 72 3b 20 43 72 65 tion Editor; Cre

bcf96890 61 74 65 64 20 6f 6e 20 72 65 6c 65 61 73 65 20 ated on release

bcf968a0 23 52 2e 31 31 2e 31 30 37 0a 01 00 02 00 02 fe #R.11.107.......

bcf968b0 00 00 02 00 01 0a 00 02 45 00 01 0a 00 02 45 00 E.....E.

bcf968c0 10 53 59 53 4c 4f 47 5f 4e 4f 54 49 46 59 20 28 .SYSLOG_NOTIFY (

bcf968d0 0a 00 02 45 00 13 53 59 53 4c 4f 47 5f 4e 4f 54 ...E..SYSLOG_NOT

bcf968e0 49 46 59 5f 49 44 3d 31 0a 00 02 45 00 02 29 0a IFY_ID=1...E..).

bcf968f0 fe 02 00 04 00 16 4e 41 4d 45 3d 7e 4d 41 52 4b NAME=~MARK
bcf96900 67 53 63 65 70 53 75 7a 4d 54 7e 0a 00 00 05 00 gScepSuzMT~.....

MARKgScepSuzMT=> read

bcf96910 15 43 4f 4e 46 49 47 5f 46 49 4c 45 5f 55 50 44 .CONFIG_FILE_UPD

bcf96920 41 54 45 3d 32 0a 00 02 9c 00 01 0a 00 02 9c 00 ATE=2...........

bcf96930 12 53 4e 4d 50 56 33 43 4f 4d 4d 55 4e 49 54 59 .SNMPV3COMMUNITY

bcf96940 20 28 0a 00 02 9c 00 0d 52 4f 57 5f 53 54 41 54 (......ROW_STAT

bcf96950 55 53 3d 31 0a 00 02 9c 00 09 4e 41 4d 45 3d 7e US=1......NAME=~

bcf96960 32 7e 0a 00 02 9c 00 1b 43 4f 4d 4d 5f 4e 41 4d 2~......COMM_NAM

bcf96970 45 3d 7e 4d 41 52 4b 74 69 4c 72 57 64 4a 53 5a E=~MARKtiLrWdJSZ
bcf96980 4a 7e 0a 00 02 9c 00 25 53 45 43 5f 4e 41 4d 45 J~.....%SEC_NAME

bcf96990 3d 7e 43 6f 6d 6d 75 6e 69 74 79 4f 70 65 72 61 =~CommunityOpera

bcf969a0 74 6f 72 52 65 61 64 4f 6e 6c 79 7e 0a 00 02 9c torReadOnly~....

bcf969b0 00 0e 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a ..STORAGETYPE=2.

bcf969c0 00 02 9c 00 02 29 0a 00 02 a4 00 08 53 4e 4d 50 )......SNMP

bcf969d0 53 20 28 0a 00 02 a4 00 0d 52 4f 57 5f 53 54 41 S (......ROW_STA

82 | Investigation of sanitization completeness

bcf969e0 54 55 53 3d 31 0a 00 02 a4 00 09 43 4f 4d 5f 49 TUS=1......COM_I

bcf969f0 44 3d 32 0a 00 02 a4 00 16 4e 41 4d 45 3d 7e 4d D=2......NAME=~M

bcf96a00 41 52 4b 74 69 4c 72 57 64 4a 53 5a 4a 7e 0a 00 ARKtiLrWdJSZJ~..

MARKgScepSuzMT=> read 0xbcf98f90

bcf98f90 6d 67 72 69 6e 66 6f 2e 74 78 74 00 ff ff ff ff mgrinfo.txt.....

bcf98fa0 00 00 00 60 00 00 15 8c bc f9 90 10 00 00 ff ff ...`............

bcf98fb0 00 00 00 01 46 4c 47 00 4d 41 52 4b 42 4f 4f 72 FLG.MARKBOOr
bcf98fc0 45 6a 6d 73 68 4f 00 00 00 00 00 00 00 00 00 00 EjmshO..........

bcf98fd0 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff

bcf98fe0 6d 61 6e 61 67 65 72 00 00 00 00 00 00 00 00 00 manager.........

bcf98ff0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bcf99000 00 00 00 00 00 00 00 00 00 00 00 02 06 00 00 00

bcf99010 6d 67 72 69 6e 66 6f 2e 74 78 74 00 ff ff ff ff mgrinfo.txt.....

bcf99020 00 00 00 60 00 00 15 a0 bc f9 90 90 00 00 ff ff ...`............

bcf99030 00 00 00 01 46 4c 47 00 4d 41 52 4b 42 4f 4f 72 FLG.MARKBOOr

bcf99040 45 6a 6d 73 68 4f 00 00 00 00 00 00 00 00 00 00 EjmshO..........

bcf99050 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff

bcf99060 6d 61 6e 61 67 65 72 00 00 00 00 00 00 00 00 00 manager.........

bcf99070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bcf99080 00 00 00 00 00 00 00 01 00 00 00 02 06 00 00 00

4.6 Summary of vendor sanitization routines for the HP Procurve switches

I have investigated the sanitization completeness of the three HP Procurve switches listed in Table
4-23. None of these switches were properly sanitized using the vendor’s proposed method (from
their Management and Configuration Guide). The J9088A was able to be sanitized using a hidden
and undocumented command. Investigating additional models of HP Procurve switches is left to
future work.

Table 4-23: Summary of Procurve switches tested

Part# Model name Firmware

J4900A 2626 H.10.50 Build date Oct 9 2007

J4903A 2824 I.10.105 Build date April 2014

J9088A 2610-48 R.11.54

 Sanitty – Making a sanitizer utility for Procurve switches | 83

5 Sanitty – Making a sanitizer utility for Procurve switches

As a result of the poor sanitization results on the Procurve switches using the vendor’s proposed
methods from the vendor’s public documentation and even hidden commands, I decided to write
my own sanitization utility: sanitty. It communicates over the serial port and uses the Procurve’s
hidden wr and read edomtset CLI commands to read and write to memory. The tool is primarily for
HP’s Procurve switches, but is written in a modular form so adding similar functionality by using
the Cisco Rommon mode as a backend should be easy.

I considered two different software development approaches: A big beautiful Java project and a
small C hack. In the end, I chose to develop A big ugly C hack.

The Java project had three benefits:

Truly object oriented Inheritance is useful to model the different
devices to sanitize. A Procurve J9088A
switch can inherit from a generic Procurve
switch class and only override device
specific functionality.

Robust string and buffer handling No magic numbers in buffer memory
allocation.

Easy GUI handling User interface components such as
buttons, dialogs, list and even a hexeditor
and interactive terminal input/output
window could be added easily.

However, the Java project had one problem: RS232 connectivity is not supported by default. As
a result, the user would have to install a third party RS232 library separately to use the tool or use a
TCP/IP serial port adapter. For these reasons, I decided to develop a small C program using Visual
Studio Express 2013 for Windows. Visual Studio Express is a free Integrated Development
Environment (IDE) with editor, debugger, and compiler.

5.1 Software layers

This section briefly describes the different components of Sanitty. Figure 5-1 shows the software and
hardware stack.

84 | Sanitty – Making a sanitizer utility for Procurve switches

sanity_pc.c

command line tool to interface with the user

GUI

pcbench.c, pcbench.h

Methods for controlling a Procurve switch
in bench / edomtset mode

Rommon.h /rommon.c

Methods for controlling a Cisco rommon
router.

term.c , term.h

Terminal I/O handling utilities

RS-232 library by Teunis van Beelen, URL: http://www.teuniz.net/RS-232/

WIN32 Linux

Host RS232 port

 RS232

Target device RS232/ Serial port

HP Procurve bench mode (jumper) or
edomtset terminal.

Cisco Rommon terminal

Figure 5-1: Sanitty software layers. Green = implemented. Red is future add-ons.

 RS232 layer 5.1.1

I used the rs-232 library by Teunis van Beelen (URL: http://www.teuniz.net/RS-232/). It provides a
general interface to configure, send, and receive data from a RS232 port. The methods are
translated into Microsoft Windows or native calls depending on the platform the source is compiled
on. I have only tried to compile Sanitty on Windows 7, but it was designed to use ANSI C as much as
possible in order to make it portable.

The OS kernel puts received data in its internal 4 KB receive buffer (interrupt triggered). Later
this buffer is polled by RS232_PollComport().The read function is non-blocking, hence it reads
whatever amount of data happens to be present in the OS’s buffer. Writes are done with a blocking
call. The entire program runs in one thread which makes it quite simple, but it is a bit ugly and
suffers from a big danger: If the OS kernel buffer is not emptied regularly, then incoming data will
over run the 4 KB kernel buffer and cause data loss. For instance a big (~4 KB) blocking write to the
RS232 port would echo back into the receive buffer and overfill it. This could also happen if the OS
kernel scheduler suspends our thread for too long.

Fortunately, this is not a big problem for us - because most commands that are sent are quite
short. I tried to feed 115.200bps into a continuous RS232_PollComport() loop on a Windows 7 Core
i7. It filled 1000 bytes of the buffer (25%) all the time so it seems the windows scheduler let us run
often enough to empty the buffer safely. Changing the priority via the Windows Taskmanager did
not make any difference.

However, to be safe I added a check. If the OS kernel buffer is filled, then an error will be logged
and the read will be treated as failed. The robust method of doing this would be to make a separate
read thread which moves data from OS kernel buffer periodically (such as every 100 ms).

http://www.teuniz.net/RS-232/

Sanitty – Making a sanitizer utility for Procurve switches | 85

 Term layer 5.1.2

This layer adds functionality to the raw RS232 methods. Especially to interact with a prompt based
terminal host. For instance, the method term_sendCmdGetRes() sends a command string, waits for
the prompt to arrive to indicate completion, then ensures the command string itself is echoed (for
robustness) and return the point of execution between the command and the new prompt.

The terminal functions are generic and have no bindings to any particular device. It might even
be possible to add a telnet backend instead of RS232.

 PCbench (ProCurveBench) layer 5.1.3

The pcbench layer controls a Procurve switch using the bench or edomtset mode. Bench mode is
entered by setting the bench jumper on the logicboard. Edomtset mode is entered by executing the
command “edomtset” twice. Once we are in one of these mode, then we can use the hidden
commands to access the device’s memory. The problem is to ensure we arrive in this mode in a
consistent and robust way. When the program starts, Sanitty handles the switch being in any of the
states listed below. The Pcbench_enterBenchMode() procedure is responsible for bringing the
switch to either edomtset or bench mode at the highest possible RS232 speed rate (115.200bps or
user selectable).

• Booting or at copyright screen waiting for two 2 carriage causes the device to autosense the
line-speed.

• Logging in at the enable prompt selects a certain speed. Sanitty iterates through the RS232
speeds to find the current line-speed.

• Already in edomtset mode ($ prompt) or bench mode (= prompt) at a certain speed. Again,
Sanitty has to try all the speeds to find the current one.

One state which is not currently handled is a device with a username and/or password set. It is
understood and reported as unhandled though. I did not find any secure, user friendly method to
have the user add the credentials in ANSI C. Future improvements could add a GUI via which the
user can enter these details.

The memory of interest in these switches is that implement in the flash chips(s). All of the
different switch models all flash chips, but they differ in some important properties:

• Chip storage size,

• Memory region the flash is mapped into, and

• Unlock sequence which must prepend any writes (a security feature in the flash chip to
prevent unintentional overwrites).

Sanitty stores these features in a database. The function pcbench_getModelInfo() takes the switch
part number, such as J4900A and returns the flash info record for the particular switch. I tried to
parse the Part# from the entry screen but for some reason could not make is robust. Therefore this
data is currently entered as a mandatory parameter on the command line.

 Sanity_pc 5.1.4

The command line program executable. contains main() and is responsible for parsing command
line options and commands. Only one command can be sent at a time.

5.2 Commands

The current sanity_pc.exe executable can perform the commands shown in Table 5-1.

86 | Sanitty – Making a sanitizer utility for Procurve switches

Table 5-1: sanitty commands

Command Result

Sanitize Writes 0x00 to the data portion of every ghost node in the nv flash
file system. A ghost node is the copy of a previous file which was
deleted (i.e., it was marked as inactive).

dumpflash [filename] Fetches the binary contents of the entire flash memory and writes
this data to a file in the local filesystem.

dumpnvfs [filename] Fetches each nv fs node and writes them, hexdump style, into a file
on the local filesystem.

In the first program version I had the sanitize command erase all nodes, even the active ones
(except for the .bootblock.). That caused a J9088A switch to go into a bootloop when rebooted with
an error message “CONFIGURATION INITIALIZATION FAILED: Corrupt or invalid Config”. It was
possible to boot into bench mode using a logic board jumper, but the switch would still crash when
trying to inspect the config (Error: TLB Miss: Virtual Addr=0x0000001”. The error was recoverable
by issuing a nvfserase, but since that command is not available on all devices in order to not upset
the switch the sanitize command now only erases inactive nodes.

5.3 Performance

Communicating via RS-232 with a Procurve Switch is easy since the port is located on the outside of
the unit. The downside is slow data transfer speed.

Most devices (including the procurves) use a RS232 terminal character framing referred to as
8N1*. Every character is transferred as 10 bits (one start bit, an 8 bit character, and a stop bit). With
a maximum RS-232 speed of 115,200 we could potentially transfer 11,520 characters per second.

The Procurves built-in read command can read 256 bytes at a time and present it as a hexdump
style output, as shown in in Output listing 5-1 coming from the Sanitty terminal log. Currently 1,517
characters are transferred to represent 256 bytes of memory. Thus the memory read bandwidth is
theoretically 11,520 * 256 / 1,517 = 1,944bytes/s.

In practice, the read bandwidth is 1,700 bytes/sec. As a result, a 16 MB entire flash takes
2.5 hours to dump. A completely full 1 MB nv fs filesystem takes 10 minutes to dump. This read
bandwidth could be improved by configuring the read command to present data in a more compact
form. This is done via the “sm” command. It might be possible to skip the address and ASCII
columns. Additionally, the prompt could be set to something shorter than the default prompt.
However, using hexadecimal encoding two characters will be required to represent one byte - so the
theoretical read maximum bandwidth limit using hexadecimal coding over RS-232 is
11,520/2=5,700 bytes/sec.

* http://en.wikipedia.org/wiki/8-N-1

Sanitty – Making a sanitizer utility for Procurve switches | 87

Output listing 5-1: Procurve Reading a 256 byte block through Sanitty
tty=none ProCurve Switch 2610-48$ read 0xbcee3100

bcee3100 50 20 28 0a 49 4e 44 45 58 3d 31 31 0a 29 0a 0a P (.INDEX=11.)..

bcee3110 43 4f 53 5f 44 53 43 50 20 28 0a 49 4e 44 45 58 COS_DSCP (.INDEX

bcee3120 3d 31 32 0a 29 0a 0a 43 4f 53 5f 44 53 43 50 20 =12.)..COS_DSCP

bcee3130 28 0a 49 4e 44 45 58 3d 31 33 0a 29 0a 0a 43 4f (.INDEX=13.)..CO

bcee3140 53 5f 44 53 43 50 20 28 0a 49 4e 44 45 58 3d 31 S_DSCP (.INDEX=1

bcee3150 34 0a 29 0a 0a 43 4f 53 5f 44 53 43 50 20 28 0a 4.)..COS_DSCP (.

bcee3160 49 4e 44 45 58 3d 31 35 0a 29 0a 0a 43 4f 53 5f INDEX=15.)..COS_

bcee3170 44 53 43 50 20 28 0a 49 4e 44 45 58 3d 31 36 0a DSCP (.INDEX=16.

bcee3180 29 0a 0a 43 4f 53 5f 44 53 43 50 20 28 0a 49 4e)..COS_DSCP (.IN

bcee3190 44 45 58 3d 31 37 0a 29 0a 0a 43 4f 53 5f 44 53 DEX=17.)..COS_DS

bcee31a0 43 50 20 28 0a 49 4e 44 45 58 3d 31 38 0a 29 0a CP (.INDEX=18.).

bcee31b0 0a 43 4f 53 5f 44 53 43 50 20 28 0a 49 4e 44 45 .COS_DSCP (.INDE

bcee31c0 58 3d 31 39 0a 29 0a 0a 43 4f 53 5f 44 53 43 50 X=19.)..COS_DSCP

bcee31d0 20 28 0a 49 4e 44 45 58 3d 32 30 0a 29 0a 0a 43 (.INDEX=20.)..C

bcee31e0 4f 53 5f 44 53 43 50 20 28 0a 49 4e 44 45 58 3d OS_DSCP (.INDEX=

bcee31f0 32 31 0a 29 0a 0a 43 4f 53 5f 44 53 43 50 20 28 21.)..COS_DSCP (

Current write performance to flash is extremely slow, about 5 bytes/second with an RS-232 speed of
115,200bps. The reason for this can be seen in Output listing 5-2 where the byte 0x00 is written to
flash address 0xbcee075e. However, to enable this flash address for writing the special 3 byte
security sequence has to be written, thus we transfer 274 characters to write a single byte(!). This
gives a theoretical write bandwidth of 11,520 * 1 / 274 = 42 bytes/s. However, I suspect that there is
a lot of delays in the send/wait for prompt interaction (the OS scheduler might not let us run exactly
when there is enough input present). There is a lot that can be done to improve this write
performance bandwidth. These optimizations include:

• Set a shorter prompt (about 70% of bandwidth is now consumed by the prompt text)

• Write a word (16 bits) at a time. The flash chip of the J9088A ProCurve Switch 2610
(S29GL128P) actually writes 16 bytes even though 8 bit writes are issued (the other 8 bits
become 0x00).

• Disable the read protect feature for the flash completely, perform the writes; and then
activate protection again.

• Find a format to feed multiple address / data pairs into the wr command in one execution.
In fact it seems to be a separate command to do just that called fill (See Output listing 4-18).

One way to improve both read and write bandwidth would be to interact with the terminal over
Telnet or SSH to overcome the limit of RS-232 asynchronous speed. For example, the Sanitty tool

88 | Sanitty – Making a sanitizer utility for Procurve switches

could setup an IP configuration in “running-config”, without committing it to flash, and then switch
over to TCP/IP communication.

Output listing 5-2: Procurve writing of a single byte through Sanitty
ProCurve Switch 2610-48=> wr 0xbc000aaa 0xaa

ProCurve Switch 2610-48=>

ProCurve Switch 2610-48=> wr 0xbc000555 0x55

ProCurve Switch 2610-48=>

ProCurve Switch 2610-48=> wr 0xbc000aaa 0xa0

ProCurve Switch 2610-48=>

ProCurve Switch 2610-48=> wr 0xbcee075e 0x00

5.4 Compatibility

The current two devices supported by the Sannitty program are the J9088A ProCurve Switch 2610
and J4900A ProCurve Switch 2626. Selecting one of these models and reading NV records of a
different model may work for other devices that share the same file system structure. However, the
flash writes must share flash properties with the device selected, i.e., using the format: base address,
size, and write protect deactivation pattern. Additional devices may be added within the method
makeModelInfoDB() in pcbench.c

5.5 Future improvements

These are some improvements that can be made (in addition to the performance improvements
suggested in the earlier section). These improvments are described in the following subsections.

 Flash chip autodetect 5.5.1

Flash chips often have a special method to probe them for their size, vendor, and type by writing a
predetermined magic sequence to them. The tool’s robustness could be improved by first verifying
that the flash chip is correct, before interacting with it. This functionality could even be necessary if
switches of the same part number use different flash chips.

 Sense nvfserase command presence 5.5.2

The nvfserase command was able to sanitize the J9088A ProCurve Switch 2610 – 48 switch (see
Section 4.4). However, this command is not present in all switches. The sanitize function could
check for the presence of this command and use it for sanitization (as using this command is must
faster that doing all of the individual writes necessary to perform the equivalent task).

The entire program could be rewritten in Java to create a more robust, easier to maintain, and
more user-friendly tool.

 Sanitty – Making a sanitizer utility for Procurve switches | 89

5.6 Forensic value and sanitization trust level

The edomtset/bench mode code seems to be in the actual executable main flash image. This is
somewhat different from the Cisco Rommon, where Rommon is a separate executable file
(sometimes even in a ROM chip). When using the sanitty tool for Procurve forensics, one must take
into account that malicious firmware could intercept the read and wr methods and present different
data to the tool than is actual present in the flash. In this way it could block sanitization writes.
Since it is flash and we do not have an erase method for all Procurve devices, we can only do ones to
zeros transitions based sanitization. Thus, we cannot prevent data interception by using the high
entropy fill techniques discussed in Section 2.2.3 “Delete and overwrite free space”.

A higher trust level could of course be achieved using JTAG or de-soldering the flash and using
an external reader. I believe the sanitization trust level offered by the built in memory access
commands is sufficient for the refurbishing industry as long as one understands its limitations.

The next section will show the data extracted from the tool is equivalent to the contents read
from the flash using an external flash programmer.

5.7 Comparison with chip read by an external programmer

In the device investigations of Chapter 4, hidden built in debug commands were used to read and
write to flash memory. An interesting question is whether these commands accurately present a
snapshot of the data in the flash. To confirm the correctness of the Sanitty dumpflash method and
to serve as a “proof of concept” of the validity of the forensic value it offers, I compared the
program’s output to the flash data extracted from a desoldered chip (as read by an external
programmer). This section describes the complete process, from desoldering to comparison.

 Desoldering of the flash chip 5.7.1

The flash chip is a 16 MB Spansion S29GL128P11TFI01 in a 56 pin Standard Thin Small Outline
Package (TSOP). This chip is surface mounted at position U8 on the board as shown in Figure 5-2
and Figure 5-3.

90 | Sanitty – Making a sanitizer utility for Procurve switches

Figure 5-2: Procurve J9088A-2610-48-flash chip location

Figure 5-3: Procurve J9088A-2610-48-flash chip location close up

I desoldered the chip by using a standard hot air gun set at 350 degrees Celsius placed in a drill
stand (see Figure 5-4). I found this to be as good as a “professional” desoldering station. The air
stream was not as focused, but since the side effect of adjacent components being desoldered did
not matter, this method was efficient and left both hands free to work with the chip. An angled
tweezer with adhesive tape turned out to be as efficient as a vacuum picker of a professional station.

Sanitty – Making a sanitizer utility for Procurve switches | 91

Figure 5-4: Heat air gun in drill stand (left). JBC Advanced JT7000 professional hot air desolder station (right)

 Cleaning the chip 5.7.2

The distance between the chip’s pins is only 0.28 mm. Solder causing bridges between the legs has
to be removed. I first tried to cover the pins with tack flux and absorb the solder on a copper braid
under the hot air stream. Then I cleaned the pins with flux cleaning fluid on a cotton swab. The chip
looked nice under a 4X magnifying glass. However, under a microscope the pins looked worse.
Residue of the flux was still present and treads from the cotton swab had been glued on and between
the legs. Additionally, the flux had left a crust on the pins which I could only remove by scratching
with a fine dental pick.

Figure 5-5: Tack flux residue and dirt on chip pins

92 | Sanitty – Making a sanitizer utility for Procurve switches

I repeated the procedure using a non-tack flux on the brad and pins and a lint free cloth. This
worked better. The procedure was recorded in a video (url:
https://www.youtube.com/watch?v=KrILApdpnFY). I learned it is absolutely necessary to work
under a microscope with at least 50X magnification to see what is going on. A low-cost digital Vtiny
UM6 microscope turned out to be sufficient, but a professional Leica stereo microscope offered a
better working view due to the stereo perspective.

Figure 5-6: VTiny low cost microscope

Figure 5-7: Leica stereo microscope

 Reading out the data 5.7.3

Aligning the chip in the TSOP56 adapter of the Xeltek SP6100 was a difficult task. It took about 20
tries until the programmer reported a good connection to all 56 leads .In fact it was necessary to
align the chip with the adapter under a microscope. This video link shows one of the unsuccessful
tries using the VTiny microscope: url: http://www.youtube.com/watch?v=yBq5lGwqyw8

It seemed the most difficult part was to place it properly centered vertically. Again, it was easier
to work under the stereo microscope..

The 16 MB data extracted from the chip through the programmer was different from the data
extracted from Sanitty. The data from the programmer had every two bytes of a16 bit word swapped.
That is, the most significant byte was stored at the lowest address (called Big-Endian system).
Figure 5-8 shows the two variations in an hex-editor. The reason for this difference is that the CPU
reads and writes 16 bit data at a time using the big endian system. But when we read data via the
read command in the edomtset mode we do it by byte access and the command presents the least
significant byte as the contents of the lower address.

https://www.youtube.com/watch?v=KrILApdpnFY
http://www.youtube.com/watch?v=yBq5lGwqyw8

Sanitty – Making a sanitizer utility for Procurve switches | 93

Figure 5-8: Flash contents. Sanitty source (upper), Flash programmer source (lower)

 Method comparison and conclusion on Sanitty correctness 5.7.4

Two consecutive Sanitty dumpflash commands were issued to read out the flash contents twice
via the edomtset debug mode . It took almost 3 hours per dump at 115200bps. The two reads were
both binary equivalents (compared using the windows fc command). From this I conclude two
things: (1) The Sanitty tool is robust and consistent when it comes to reading large memory
contents, and, (2) the Procurve switch did not modify the flash spontaneously during these 6 hours.

After the double Sanitty read, the device was shut down by removing power. The flash chip was
desoldered and its contents extracted as described in Sections 5.7.1, 5.7.2, 5.7.3. The Sanitty file was
binary equivalent to a byteswapped version of the flash contents extracted from the chip using the
programmer.

This demonstrates that the Sanitty tool correctly produce a snapshot of the current data of the flash
memory on a Procurve switch. The benefit of using Sanitty for the process is summarized in

94 | Sanitty – Making a sanitizer utility for Procurve switches

Table 5-2 where it is compared to the process of desoldering the chip then reading it in an external
flash programmer and resolder it back on the board (Sanitty dumpflash command leaves a
functional switch so it is fair to compare it with a method which can resolder the chip successfully).

Sanitty – Making a sanitizer utility for Procurve switches | 95

Table 5-2: Comparison of the Sanitty and external flash reader data extraction method*

 Sanitty dumpflash

 command

Flash put in external reader

(resoldered to board after read)

Tools required Serial cable

Sanitty program

Hot air and/or infrared rework station to
have a robust reflow process when soldering
the chip back.

Solder paste dispenser

Stereo microscope

TSOP56 Flash reader

Solder iron.

Dental pick, tweezers, solder paste, flux

Electrostatic discharge protected work area

Cost of tools $5 US$5.000-US$50.000 depending on quality
level on the rework station, flash reader and
microscope.

Time required 5 minutes of setup + 3 hours of
fika†

5 hours of labor. No fika.

5.8 Sanitization confirmation using Sanitty

In Section 4.4 we concluded that the HP built in procedure HP_2626_BUTTON from Appendix A
did not properly sanitize the Procurve 2610-48 switch. Let’s repeat the procedure but and follow up
with the Sanitty sanitize command to investigate the effect of the sanitization.

A HP Procurve 2610-48 switch J9088A running firmware R.11.107 was prepared with the 10
character markers in Table 4-21. The HP_PROCURVE_SANITTY procedure in Appendix A was
performed. The flash content was inspected (using the Sanitty dumpflash command) just after the
vendor sanitization method was performed. All markers were found. Then the Sanitty sanitize
command was performed followed by a merker search in the entire 16MB flash again. None of the
markers were found.

Can we conclude from this test that the Sanitty tool properly sanitizes this Procurve? No! Not
finding any markers is equivalent to an unknown sanitization result (see Chapter 3). For instance
the device could store a copy of the manager password string backwords in some area of the flash
which would not be found in a string search. However, an unknown sanitization result is of course
still better than the vendor recommended procedure which was proven unsafe.

* All costs are rough guestimations
† Fika is a Swedish word for a break with tea or coffee

96 | Sanitty – Making a sanitizer utility for Procurve switches

Table 5-3: ProCurve Switch 2610-48 markers

Parameter to host marker String marker
(10 random chars)

SNMP password MARKaoQvioTAGp

Manager password MARKrzeNUuCONZ

Hostname MARKncfmQxDMTD

 Conclusions and Future work | 97

6 Conclusions and Future work

This chapter draws conclusion based upon the investigations that were done. It describes the goals
that were achieved and areas where future work could be done to continue the work. The chapter
concludes with some reflections on the societal impacts of this thesis project.

6.1 Conclusions

In my research I found that common enterprise network devices have flaws in their sanitization
routines. A CISCO 1712 router and two HP Procurve switches were investigated in detail. After
following the vendor’s sanitization procedures, the Cisco router still contained the VLAN
information in flash and the Procurve switches still contained the entire configuration (not only the
last configuration, but also copies of previous configurations). Clearly, the developers of the
software in their devices did have not the transfer of equipment from one owner to another in their
minds when designing their sanitization commands. The equipment needed to extract old (thought
to be erased) configurations is a computer with a RS232 port adapter and an RS232 cable. The cost
is less than $20 (excluding the computer) and the time needed is a only a few minutes.

Before starting with these investigations, I thought JTAG would be the best method to access
the nonvolatile memories of these devices. I even purchased five JTAG tools and a $4000 flash
programmer to use for the tests. However, in practice these access methods were complicated to
develop and difficult to use from a professional refurbisher’s point of view (especially for someone
who may have to process thousands of devices per month). The easiest method to access these
devices was via an external asynchronous RS-232 port using the hidden development commands
that the vendor left in the firmware’s CLI. These commands provide easy access to the device’s
nonvolatile memories.

 Proposal to vendors 6.1.1

What could vendors do to plan for future sanitization of their devices? It would be convenient to
have a single “sanitize all” command to sanitize the entire device, boards, and expansion modules
currently present in the device. This command would essentially return the device to the state it had
when it was shipped from the factory.

Given the difficulties of sanitizing certain types of storage, such as managed NAND flash, there
is another approach: the cryptographic erase discussed in Section 2.3.6. A cryptographic key would
be generated the first time the end user boots the device and this key would be stored in a easy to
sanitize memory location (e.g. preferably in EEPROM and never in managed flash). All subsequent
writes to any non-volatile storage must be encrypted using this key. All subsequent reads from these
devices would use this key to decrypt the stored contents. Upon decommissioning a device the key is
simply overwritten. As a result the stored data cannot be decrypted (assuming that the key length is
sufficiently long and that the encryption method used is sufficiently safe).

6.2 Limitations

The aim of this thesis project was to test a large variety of devices from multiple vendors. However,
the work required per device was more than I anticipated so I ran out of time. With the limited set of
devices tested, this thesis does not attempt to identify any specific vendor as having worse
sanitization routines than any other. However, from this small sample size it is clear that
sanitization of devices has not been a design goal for the software found in this sample of devices.

6.3 Future work

This section summarizes work during the investigations which was left for the future either because
of time constraints or because the topic was outside the focus of this thesis project.

98 | Conclusions and Future work

 Further development of Sanitty 6.3.1

While the tool provides the basic functionality for sanitizing two different HP Procurve switches,
there are a number of obvious improvements that should be made to this tool. These include:

• Add more Procurve devices (i.e. add information about their flash chips to the Sanitty
device database).

• Add support for issuing commands to Cisco’s Rommon in order to sanitize Cisco devices.

• Integrate support utilities, such as decoding the configuration of the CPU and memory
controller.

• Improve the program’s performance. Possibly by connecting over telnet/ssh. Investigate
whether the remote debugger interface is more efficient and requires less overhead to
transferring memory contents, especially when writing to flash.

• Rewrite the program in Java to make a robust command line and GUI tool.

 JTAGulator extest pin mapper 6.3.2

It would be nice to add a “EXTEST pinout probe test” to the JTAGulator to aid in automating the
mapping between a EXTEST boundary scan register position and an exposed pin on an IC. It would
work as follows:

1. A JTAG enabled chip presumed to be connected to the pins of the memory chip of
interest is identified.

2. One of the pins on the JTAGulator is configured as input: the probe-pin.

3. A probe is connected to the probe-pin and connected to a pin of the chip to map. For
chips with a narrow pin spread the probe could be a plastic film laminated with a
conductive tape with appropriate thickness to be squeezed in between the chip pins. Or
perhaps a small probe pin operated under a microscope.

4. The JTAGulator would inject a single bit into the extest register and shift it around until
it is recognized on the probe pin. This is repeated for all the chip’s pins of interest and
eventually we have the relation between each chip’s pin (of interest) and its
corresponding extest register position. We can use this information to interact with the
chip.

As far as I know, there is no tool available yet with the above feature. Not even in the $10,000+
extest testers from XJTAG.

Conclusions and Future work | 99

Figure 6-1: The JTAGulator tool (pink) probing the JTAG pinout of a NetScreen 5GT firewall

 Writing to NVRAM from Cisco Rommon 6.3.3

It would be nice to have write access to the NVRAM chip via Cisco’s Rommon. Further investigation
is needed to understand how to activate the WE signal from the CSICO 1712 rommon prompt (as
investigated in Section 4.1.3.4).

 Investigate more devices 6.3.4

It is a straightforward task to investigate additional Cisco routers with Rommon support by using
the methods described in this thesis. The same is true for additional models of HP Procurve
switches. It would be interesting to develop JTAG access methods for devices not offering memory
access via the terminal CLI.

 External storage of sensitive data 6.3.5

One approach* is to avoid storing any sensitive data in the device in the first place. Some devices
have external memory card sockets such as compact flash or USB ports. Before starting using the
device a simple configuration could be done to tell the software to look for the main config in an
external memory card After that the WE pins of the chips normally holding the config is electrically
tied to a level which prevents further writes, i.e. a physical write protect. Cisco routers have the
choice of specifying the startupconfig in the environmental variable CONFIG_FILE or as a config-
command “boot config xxx:xxx” [91Para. Specifying the Startup Configuration File]. This approach
needed to be further investigated to learn how these devices react when they cannot write to the
NVRAM. Upon decommissioning and transfer of ownership the write protect is removed, and the
memory card kept.

 Tool for the Motorola BDM interface 6.3.6

As covered in Section 0, I failed to read and write flash and NVRAM memory contents of the
CISCO 1712 using the PE-Micro Cyclone MAX BDM debugger tool. Since many embedded
networking devices use a Freescale Semiconductor CPU it would be nice to further investigate this
method of memory access. Either with this or another BDM interface tool.

* Suggested by G. Q. Maguire Jr.

100 | Conclusions and Future work

Two features that do not (yet) exist in the Cyclone MAX would be especially useful:

1. Take control of the CPU without resetting it. Alternatively, reset it in a “soft” way which
keeps the memory controller configuration intact.

2. Extract and decode the memory controller’s configuration registers inside the CPU. This
requires the step above. This will provide very useful information as to which memory
regions contain the non-volatile memories of interest for sanitization.

I believe the Cyclone MAX debugger tool has the appropriate hardware interface to do the job.
However, a low level software API is needed to control the tool as the supplied software tools are of
no help.

 In-circuit programming of a parallel EEPROM 6.3.7

In Section 4.1.6 I failed to read (in-circuit) the CISCO 1712 EEPROM soldered to the logic board. It
would be interesting to see if a programmer could be built with sufficient “power” to control the TTL
levels of the chip in competition with other drivers. Of course, this should also be done without
damaging the chip or any components connected to it.

The web article by Andromeda Research Labs entitled “Understanding In-Circuit EEPROM and
Microcontroller Reading and Programming” [81] has some advice on serial EEPROMs which may
be used as a starting point for future work.

 Proof of concept: Malicious code inside a flash controller 6.3.8

Create firmware for the embedded CPU on a Compact Flash or USB memory stick that interferes
with sanitization attempts. The purpose would be to prove that the precense of a malicious firmware
would need to be considered when performing sanitization.

 Proof of concept: Remote VTP packet injection 6.3.9

Test if a VTP packet can be tunneled remotely into a LAN, like a Trojan horse, with the “Ethernet
frame in IP datagram” technique discussed in Secti0n 4.1.8.1.

 Fake a file spanning the entire flash 6.3.10

I didn’t find any way to dump the whole flash over a IP based protocol such as TFTP or FTP in either
the Cisco Rommon nor HP procurve edomtset mode. However both Procurve firmware and Cisco
IOS has methods to copy a file to a TFTP server. So if we could create or modify an existing file to
span the entire flash range we could “fool” the device to send it out over TFTP as any regular file.

For Cisco rommon based routers this could be done by modifying the length field of the first file
to include the entire flash. If the first file is the IOS executable the router won’t boot as the
checksum now is invalid. We could either recalculate the checksum or load an IOS image into ram
via TFTP and boot that.

In HP Procurve emotset mode I didn’t find any flash erase or memory copy commands. If a
memory copy command could be found we could copy the while flash into some unused portion of
RAM, create a file header according to the fields in Table 4-15, and link it in from the last existing
file. That “next” address of the last file header is currently 0xFFFFFFFF so it is possible to flash-
write any RAM address to it. If the Procurve filesystem implementors forgot to make a sanity check
on the value set to next address it might just copy the file even if it is in RAM.

Both these methods require modifying the flash contents slightly, but since we know the old
values we could write them back to the forensic image of the flash.

Conclusions and Future work | 101

 Try to force a Procurve switch to reinitialize its flash file system 6.3.11

In two switches (J4900A, 2626 and J4903A ,2824) I couldn’t find any command to sanitize the
flash non-volatile file system and remove the inactive ghost file blocks by erasing the whole area. It
would be interesting to see if it is possible to provoke and force the switch to do it. Such as filling up
the space entirely with a dummy file and then ask it to create a new file. Or by setting the next
pointer of the first block to zero to cause a file system error.

 Non perfect random number generator impact on marker strength 6.3.12

In the theoretical research of marker strength (see Section 3.2 and Appendix I) the markers were
assumed to be constructed using a perfect random number generator (RNG). In reality RNGs will
not be perfect. One problem is if a pseudorandom number generator (PRNG) is used and which, for
some “bad” seed, has a very short period. That would cause markers to repeat which is bad because
we assume that each marker is independent to all other data including other markers. Since
markers are short, such as 15 bytes, it shouldn’t be a big problem but it has to be understood. More
importantly it is essential to not use the same seed when initializing the PRNG because that will
obviously cause marker repetition.

The effect of a non-perfect RNG or PRNG on the marker strength is left to future work. Perhaps
the effect can be quantified theoretically, or proved so small we don’t have to consider it given that
the RNG/PRNG possess some minimum level of “perfectness”.

6.4 Reflections

Equipment reuse is environmentally friendly. Additionally, it is economically advantageous for
many customers, for whom older equipment meets their requirements. Moreover, many customers
are able to utilize networking equipment that they would not normally have been able to afford (if
they had to buy only new equipment), hence the secondary market offers many benefits to society.
However, uncertainty about the correctness of the built in vendor commands to properly sanitize a
unit may deter companies to sell their equipment in a secondary market.

This thesis has shown that vendors’ recommendations for configuration erasures should not be
trusted. Companies may choose to scrap their equipment to prevent leaking sensitive information. I
assume that equipment vendors have no real incentive to facilitate transfer of ownership of their
devices, as they make their money selling new equipment and probably prefer that decommissioned
devices be taken out of market - so they do not interfere with the sale of their new equipment.
Therefore, the pressure to implement proper sanitization methods in the equipment has to come
from customer demand or by governmental environmental legislation. Thus there is a need for
societal pressure to “encourage” equipment reuse (as appropriate).

Currently sanitization is often the responsibility of the equipment refurbisher. Knowledge,
research, and tools could be shared via trade organizations such as United Network Equipment
Dealer Association (UNEDA). Additionally, a trade organization might introduce a process to offer
some type of certification to the end users asserting that a given refurbisher has the tools and
knowhow to properly sanitize specific types of equipment. Alternatively, vendors might offer
certification of a refurbisher for a given vendor’s equipment.

 References | 103

References

[1] ‘Definitions of the SI units: The binary prefixes’. [Online]. Available:
http://physics.nist.gov/cuu/Units/binary.html. [Accessed: 22-Jan-2015]

[2] ‘EUR-Lex - 32012L0019 - EN - EUR-Lex’. [Online]. Available: http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012L0019. [Accessed: 13-
Nov-2014]

[3] ‘Erase - Definition and More from the Free Merriam-Webster Dictionary’. [Online].
Available: http://www.merriam-webster.com/dictionary/erase. [Accessed: 13-Jan-
2015]

[4] ‘Chapter 8. Remote OS Detection’. [Online]. Available:
http://nmap.org/book/osdetect.html. [Accessed: 20-Jan-2015]

[5] P. Gutmann, ‘Secure Deletion of Data from Magnetic and Solid-state Memory’, in
Proceedings of the 6th Conference on USENIX Security Symposium, Focusing on
Applications of Cryptography - Volume 6, Berkeley, CA, USA, 1996, pp. 8–8
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267569.1267577.
[Accessed: 12-Jan-2015]

[6] G. Rostky, ‘Remembering the PROM knights of Intel | EE Times’, 07-Mar-2002.
[Online]. Available: http://www.eetimes.com/document.asp?doc_id=1144961&.
[Accessed: 03-Jan-2015]

[7] Spansion, ‘Flash Memory: An Overview’. [Online]. Available:
http://www.spansion.com/Support/Application%20Notes/FlashOverview_AN.pdf

[8] ATMEL, ‘AT28C010, 1-megabit Paged Parallel EEPROM’. [Online]. Available:
http://www.atmel.com/Images/doc0353I.pdf

[9] ‘Basic information about memory chips and programming’. [Online]. Available:
http://www.batronix.com/shop/electronic/eprom-programming.html#06.
[Accessed: 03-Jan-2015]

[10] ‘M24C08-WBN6P - STMICROELECTRONICS - IC, EEPROM I2C 8K, 24C08, DIP8
| Farnell element14 UK’. [Online]. Available:
http://uk.farnell.com/stmicroelectronics/m24c08-wbn6p/ic-eeprom-i2c-8k-
24c08-dip8/dp/9882820. [Accessed: 03-Jan-2015]

[11] Xeltek, ‘目录 - IS01_Manual.pdf’. [Online]. Available:
https://www.xeltek.com/software/spIS01/IS01_Manual.pdf. [Accessed: 03-Jan-
2015]

[12] A. Tal, ‘Two Flash Technologies Compared: NOR vs NAND’. Oct-2002 [Online].
Available: http://focus.ti.com/pdfs/omap/diskonchipvsnor.pdf. [Accessed: 29-Dec-
2014]

[13] Cactus Technologies Limited, ‘NAND Flash Data Storage Overview – SLC, MLC and
TLC - Embedded Computing Design’. [Online]. Available: http://embedded-
computing.com/news/nand-slc-mlc-tlc/. [Accessed: 29-Dec-2014]

[14] ‘TN-29-19: NAND Flash 101 Introduction’. Micron [Online]. Available:
http://www.eng.umd.edu/~blj/CS-590.26/micron-tn2919.pdf. [Accessed: 29-Dec-
2014]

[15] ‘Open NAND Flash Interface Specification 4.0’. 04-Feb-2014 [Online]. Available:
http://www.onfi.org/-/media/onfi/specs/onfi_4_0%20gold.pdf. [Accessed: 30-
Dec-2014]

[16] ‘COMMON FLASH INTERFACE (CFI): | JEDEC’. [Online]. Available:
http://www.jedec.org/standards-documents/docs/jesd-6801. [Accessed: 05-Jan-
2015]

[17] J. Heidecker, ‘NAND Flash Qualification Guideline’, 11-Jun-2012. [Online].
Available:
http://nepp.nasa.gov/workshops/etw2012/talks/tuesday/t04_heidecker_flash_qu
alification.pdf. [Accessed: 29-Dec-2014]

104 | List of Erase procedures

[18] The Exploration and Exploitation of an SD Memory Card [30c3]. 2014 [Online].
Available:
https://www.youtube.com/watch?v=CPEzLNh5YIo&feature=youtube_gdata_playe
r. [Accessed: 29-Dec-2014]

[19] ‘K9F5608X0D_1.3_final.fm - ds_k9f5608x0d_rev13.pdf’. [Online]. Available:
http://download.siliconexpert.com/pdfs/2007/08/05/semi_ap/manual/sam/ds/d
s_k9f5608x0d_rev13.pdf. [Accessed: 29-Dec-2014]

[20] ‘flash_mem_summit_jcooke_inconvenient_truths_nand.pdf’. [Online]. Available:
https://www.micron.com/~/media/Documents/Products/Presentation/flash_me
m_summit_jcooke_inconvenient_truths_nand.pdf. [Accessed: 29-Dec-2014]

[21] ‘Theory and practice of flash memory mobile forensics - viewcontent.cgi’. [Online].
Available: http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1066&context=adf.
[Accessed: 29-Dec-2014]

[22] ‘NAND Flash Memories and Programming NAND Flash Memories Using Elnec
Device Programmers’. .

[23] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, ‘Reliably Erasing Data from
Flash-based Solid State Drives’, in Proceedings of the 9th USENIX Conference on
File and Stroage Technologies, Berkeley, CA, USA, 2011, pp. 8–8 [Online].
Available: http://dl.acm.org/citation.cfm?id=1960475.1960483. [Accessed: 12-Jan-
2015]

[24] J. Wise, ‘Reverse Engineering a NAND Flash Device Management Algorithm |
Joshua Wise’s domain’. [Online]. Available:
http://joshuawise.com/projects/ndfslave. [Accessed: 03-Jan-2015]

[25] ‘Flash Extractor Library’. [Online]. Available: http://www.flash-
extractor.com/library/. [Accessed: 03-Jan-2015]

[26] ‘PC-3000 flash’. [Online]. Available: http://www.pc-
3000flash.com/solbase/?lang=eng. [Accessed: 03-Jan-2015]

[27] ‘Hyperstone F2-16X, 32-Bit Flash Memory Controller Specification’. Hyperstone
AG, 10-Mar-2006.

[28] ‘AT28C16 16K (2K x 8) Parallel EEPROMs - doc0540.pdf’. [Online]. Available:
http://www.atmel.com/Images/doc0540.pdf. [Accessed: 07-Jan-2015]

[29] Oracle, ‘Writing PCMCIA Device Drivers’. [Online]. Available:
https://docs.oracle.com/cd/E19957-01/802-6321/802-6321.pdf. [Accessed: 07-
Jan-2015]

[30] ‘PC CARD STANDARD’. [Online]. Available: http://affon.narod.ru/02el80.pdf.
[Accessed: 07-Jan-2015]

[31] ‘Joint Test Action Group - Wikipedia, the free encyclopedia’. [Online]. Available:
http://en.wikipedia.org/wiki/Joint_Test_Action_Group. [Accessed: 21-Dec-2014]

[32] ‘IEEE Standard Test Access Port and Boundary Scan Architecture’, IEEE Std
1149.1-2001, pp. 1–212, Jul. 2001. DOI: 10.1109/IEEESTD.2001.92950

[33] ‘JTAG - A Technical Overview - TAP Signals and Instructions’. [Online]. Available:
http://www.xjtag.com/support-jtag/jtag-technical-guide.php. [Accessed: 21-Dec-
2014]

[34] ‘In-circuit test - Bed of Nails Testing’. [Online]. Available:
http://en.wikipedia.org/wiki/In-circuit_test. [Accessed: 27-Dec-2014]

[35] ‘JTAG Pinouts’. [Online]. Available: http://www.jtagtest.com/pinouts/. [Accessed:
28-Dec-2014]

[36] ‘JTAGulatorTM | Grand Idea Studio’. [Online]. Available:
http://www.grandideastudio.com/portfolio/jtagulator/. [Accessed: 28-Dec-2014]

[37] I. M. F. Breeuwsma, ‘Forensic imaging of embedded systems using JTAG
(boundary-scan)’, Digital Investigation, vol. 3, no. 1, pp. 32–42, Mar. 2006
[Online]. DOI: 10.1016/j.diin.2006.01.003

References| 105

[38] ‘Testing Non-JTAG Devices with Boundary Scan - e.g. Memory Testing’. [Online].
Available: http://www.xjtag.com/support-jtag/jtag-memory-testing.php.
[Accessed: 03-Jan-2015]

[39] ‘User Manual for USBJTAG NT’. Sep-2010 [Online]. Available:
http://www.usbjtag.com/jtagnt/usbjtagnt.pdf

[40] ‘Non-intrusive On-chip Debug Hardware Accellerates Development for MIPS RISC
Processors’. [Online]. Available:
http://read.pudn.com/downloads93/doc/363855/ejtag_debug_eetimes.pdf.
[Accessed: 05-Jan-2015]

[41] ‘Debug Adapter Hardware - OpenOCD User’s Guide’. [Online]. Available:
http://openocd.sourceforge.net/doc/html/Debug-Adapter-Hardware.html#Debug-
Adapter-Hardware. [Accessed: 05-Jan-2015]

[42] ‘OpenOCD User’s Guide’, 05-Jan-2015. [Online]. Available:
http://openocd.sourceforge.net/doc/pdf/openocd.pdf. [Accessed: 05-Jan-2015]

[43] ‘Instructions on doing (semi-)manual JTAG boundary scan with OpenOCD’.
[Online]. Available:
http://permalink.gmane.org/gmane.comp.debugging.openocd.devel/23336.
[Accessed: 05-Jan-2015]

[44] ‘Rommon memory dump’. [Online]. Available:
https://supportforums.cisco.com/sites/default/files/legacy/6/4/3/64346-
Document1.pdf. [Accessed: 05-Jan-2015]

[45] ‘Schneier on Security: Cisco Harasses Security Researcher’. [Online]. Available:
https://www.schneier.com/blog/archives/2005/07/cisco_harasses.html.
[Accessed: 12-Jan-2015]

[46] ‘KDV Electronics - uClinux Cisco 2500’. [Online]. Available:
http://www.kdvelectronics.eu/uClinux-cisco2500/uClinux-cisco2500.html.
[Accessed: 04-Jan-2015]

[47] A. Weiss, ‘The Open Source WRT54G Story’, WIFI-PLANET, 08-Nov-2005.
[Online]. Available: http://www.wi-fiplanet.com/tutorials/article.php/3562391.
[Accessed: 04-Jan-2015]

[48] ‘Cisco - LinuxMIPS’. [Online]. Available: http://www.linux-
mips.org/wiki/Cisco#The_Boot_ROM_API. [Accessed: 04-Jan-2015]

[49] ‘How do I reset the Linksys Wi-Fi Router, E1000 to factory defaults?’. [Online].
Available:
http://kb.linksys.com/Linksys/ukp.aspx?pid=80&app=vw&vw=1&login=1&json=1
&docid=0021aa1b87a14d83b94350ce576af242_KB_EN_v1.xml. [Accessed: 06-
Jan-2015]

[50] J. Claudius, ‘Getting Terminal Access to a Cisco Linksys E-1000 - SpiderLabs
Anterior’, 31-Dec-2012. [Online]. Available:
http://blog.spiderlabs.com/2012/12/getting-terminal-access-to-a-cisco-linksys-e-
1000.html. [Accessed: 28-Dec-2014]

[51] ‘RS232enum’. [Online]. Available: https://github.com/cyphunk/RS232enum.
[Accessed: 05-Jan-2015]

[52] ‘MAX232’, Wikipedia, the free encyclopedia. 24-Nov-2014 [Online]. Available:
http://en.wikipedia.org/w/index.php?title=MAX232&oldid=635260926.
[Accessed: 06-Jan-2015]

[53] ‘List of integrated circuit package dimensions - Wikipedia, the free encyclopedia’.
[Online]. Available:
http://en.wikipedia.org/wiki/List_of_integrated_circuit_package_dimensions.
[Accessed: 04-Jan-2015]

[54] ‘MCUmall Electronics Inc. A low cost EPROM EEPROM Atmel PIC I2C SPI
programmer online store’. [Online]. Available:

106 | List of Erase procedures

http://www.mcumall.com/comersus/store/comersus_viewItem.asp?idProduct=43
12. [Accessed: 04-Jan-2015]

[55] ‘Xeltek SuperPro 6100 Universal IC Chip Device Programmer’. [Online]. Available:
http://www.xeltek.com/universal-programmers/superpro-6100-universal-ic-chip-
device-programmer. [Accessed: 04-Jan-2015]

[56] Pomona Electronics, ‘Pomona Electronics, PLCC Test clips’. [Online]. Available:
http://www.pomonaelectronics.com/pdf/d5515_100.pdf. [Accessed: 03-Jan-2015]

[57] J. Oh, ‘Reverse Engineering Flash Memory for Fun and Benefit’. [Online].
Available: https://www.blackhat.com/docs/us-14/materials/us-14-Oh-Reverse-
Engineering-Flash-Memory-For-Fun-And-Benefit-WP.pdf. [Accessed: 03-Jan-
2015]

[58] ‘Draft NIST Special Publication 800-88 Revision 1, Guidelines for Media
Sanitization - sp800_88_r1_draft.pdf’. [Online]. Available:
http://csrc.nist.gov/publications/drafts/800-88-rev1/sp800_88_r1_draft.pdf.
[Accessed: 14-Nov-2014]

[59] P. Gutmann, ‘Secure Deletion of Data from Magnetic and Solid-State Memory’,
Secure Deletion of Data from Magnetic and Solid-State Memory, 25-Nov-2014.
[Online]. Available:
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html. [Accessed: 25-
Nov-2014]

[60] F. Domke, ‘Blackbox JTAG Reverse Engineering’, 27-Nov-2009. [Online].
Available:
http://events.ccc.de/congress/2009/Fahrplan/attachments/1435_JTAG.pdf.
[Accessed: 05-Jan-2015]

[61] [27C3] (en) JTAG/Serial/FLASH/PCB Embedded Reverse Engineering Tools and
Techniques. 2011 [Online]. Available:
https://www.youtube.com/watch?v=8Unisnu-
cNo&feature=youtube_gdata_player. [Accessed: 05-Jan-2015]

[62] ‘27C3: JTAG/Serial/FLASH/PCB Embedded Reverse Engineering Tools and
Techniques’, 09-Feb-2011. [Online]. Available:
http://events.ccc.de/congress/2010/Fahrplan/events/4011.en.html. [Accessed: 05-
Jan-2015]

[63] ‘PCMCIA Filesystem Compatibility Matrix and Filesystem Information - Cisco’.
[Online]. Available: http://www.cisco.com/c/en/us/support/docs/routers/7200-
series-routers/6145-pcmciamatrix.html. [Accessed: 04-Jan-2015]

[64] ‘Cisco IOS Command Modes’. [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/ios/12_2/configfun/configuration/guide/f
fun_c/fcf019.html#wp1000905. [Accessed: 07-Jan-2015]

[65] ‘10 Reasons to Buy SEDs_Sept.2010.pdf’. [Online]. Available:
https://www.trustedcomputinggroup.org/files/resource_files/0B942977-1A4B-
B294-
D0CFD24A431444FF/10%20Reasons%20to%20Buy%20SEDs_Sept.2010.pdf.
[Accessed: 27-Dec-2014]

[66] S. Swanson and M. Wei, ‘SAFE: Fast, Verifiable Sanitization for SSDs’, 13-Oct-2010.
[Online]. Available: http://cseweb.ucsd.edu/~swanson/papers/TR-cs2011-0963-
Safe.pdf. [Accessed: 27-Dec-2014]

[67] ‘Floating-point arithmetic may give inaccurate results in Excel’. [Online].
Available: http://support.microsoft.com/kb/78113. [Accessed: 27-Dec-2014]

[68] L. Råde and B. Westergren, Mathematics Handbook for Science and Engineering,
Fourth. 1998.

[69] ‘Password Recovery Procedure for Cisco Aironet Equipment - Cisco’. [Online].
Available: http://www.cisco.com/c/en/us/support/docs/wireless/aironet-1200-
series/9215-pwrec-2.html. [Accessed: 07-Jan-2015]

References| 107

[70] ‘Cisco 1712 Security Access Router’, Cisco. [Online]. Available:
http://cisco.com/c/en/us/products/routers/1712-security-access-
router/index.html. [Accessed: 17-Jan-2015]

[71] ‘Cisco 1721 and Cisco 1720 Modular Access Routers [Cisco 1700 Series Modular
Access Routers] - Cisco Systems’. [Online]. Available:
http://www.cisco.com/en/US/products/hw/routers/ps221/products_data_sheet0
9186a00800920ec.html. [Accessed: 17-Jan-2015]

[72] ‘Understanding the Cisco IOS Software’. [Online]. Available:
http://www.cisco.com/E-
Learning/bulk/public/tac/cim/cib/using_cisco_ios_software/01_understanding_i
os.htm. [Accessed: 22-Jan-2015]

[73] Cisco Systems, Internetworking Troubleshooting Handbook, 2 edition.
Indianapolis, IN: Cisco Press, 2001.

[74] Y. C. Hoong, ‘- itcertnotes -: The Cisco Router Cookie’. [Online]. Available:
http://www.itcertnotes.com/2011/03/cisco-router-cookie.html. [Accessed: 17-Jan-
2015]

[75] Catalyst, ‘CAT28C256, 256K-Bit Parallel EEPROM’. [Online]. Available:
http://ecee.colorado.edu/~mcclurel/Catalyst_Parallel_EEPROM_28C256.pdf.
[Accessed: 17-Jan-2015]

[76] Freescale Semiconductor, Inc, ‘MPC862 PowerQUICC Integrated Communications
Processor Family Reference Manual - MPC862UM.pdf’. [Online]. Available:
http://cache.freescale.com/files/product/doc/MPC862UM.pdf. [Accessed: 18-Jan-
2015]

[77] ‘Data Sheet: MAX 7000 Programmable Logic Device Family - m7000.pdf’.
[Online]. Available: http://www.altera.com/literature/ds/m7000.pdf. [Accessed:
23-Jan-2015]

[78] ‘Intel 3 Volt Intel StrataFlash Memory 28F128J3A, 28F640J3A 28F320J3A
Datasheet’. [Online]. Available: http://www-
mtl.mit.edu/Courses/6.111/labkit/datasheets/28F128J3A.pdf. [Accessed: 09-Jan-
2015]

[79] ‘Cisco Flash File System tool’. [Online]. Available: http://si.org/cffs/. [Accessed:
17-Feb-2015]

[80] S. Howard, ‘A Background Debugging Mode Driver Package for Modular
Microcontrollers’. [Online]. Available:
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN1230.pdf.
[Accessed: 10-Feb-2015]

[81] Andromeda Research Labs, ‘In-circuit reading and programming of eeproms and
microcontrollers’. [Online]. Available: http://www.arlabs.com/incircht.htm.
[Accessed: 27-Feb-2015]

[82] Freescale Semiconductor, ‘MPC862/857T/857DSL PowerQUICC Family Hardware
Specifications - MPC862EC.pdf’. [Online]. Available:
http://cache.freescale.com/files/32bit/doc/data_sheet/MPC862EC.pdf#page=1&z
oom=auto,-265,792. [Accessed: 28-Feb-2015]

[83] ‘Data Sheet: MAX 7000 Programmable Logic Device Family - m7000.pdf’.
[Online]. Available: http://www.altera.com/literature/ds/m7000.pdf. [Accessed:
23-Jan-2015]

[84] ‘Virtual LAN Security: weaknesses and countermeasures - virtual-lan-security-
weaknesses-countermeasures-1090’. [Online]. Available:
http://www.sans.org/reading-room/whitepapers/networkdevs/virtual-lan-
security-weaknesses-countermeasures-1090. [Accessed: 16-Feb-2015]

[85] ‘Catalyst 6500 Release 12.2SX Software Configuration Guide - Layer 2 LAN Ports
[Cisco Catalyst 6500 Series Switches]’, Cisco. [Online]. Available:

108 | List of Erase procedures

http://cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-
2SX/configuration/guide/book/layer2.html. [Accessed: 16-Feb-2015]

[86] Black Hat USA 2013 - Fully Arbitrary 802.3 Packet Injection: Maximizing the
Ethernet Attack Surface. 2013 [Online]. Available:
https://www.youtube.com/watch?v=j_sqwo1xjIA&feature=youtube_gdata_player.
[Accessed: 16-Feb-2015]

[87] ‘Understanding VLAN Trunk Protocol (VTP)’, Cisco. [Online]. Available:
http://cisco.com/c/en/us/support/docs/lan-switching/vtp/10558-21.html.
[Accessed: 16-Feb-2015]

[88] ‘Erase Vlan Data on Cisco Switches - Spiceworks’. [Online]. Available:
http://community.spiceworks.com/how_to/47462-erase-vlan-data-on-cisco-
switches. [Accessed: 16-Feb-2015]

[89] ‘Cisco Lab Erasing Router And Switch Configs – Even VLAN.DAT’. [Online].
Available:
http://www.thebryantadvantage.com/CCNA%20CCNP%20Home%20Lab%20Tuto
rial%20Erasing%20Configurations%20On%20Routers%20And%20Switches.htm.
[Accessed: 16-Feb-2015]

[90] ‘Resetting Catalyst Switches to Factory Defaults - Cisco’. [Online]. Available:
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-2900-xl-series-
switches/24328-156.html. [Accessed: 16-Feb-2015]

[91] ‘Managing Configuration Files’, Cisco. [Online]. Available:
http://cisco.com/c/en/us/td/docs/ios/12_2/configfun/configuration/guide/ffun_
c/fcf007.html. [Accessed: 06-Apr-2015]

[92] ‘HP ProCurve Switch 2600 Series - 59906036-e1.pdf’. [Online]. Available:
ftp://ftp.hp.com/pub/networking/software/59906036-e1.pdf. [Accessed: 16-Feb-
2015]

[93] ‘ispLSI 5128VE Data Sheet - 5128ve.pdf’. [Online]. Available:
http://download.siliconexpert.com/pdfs/source/qd/lat/5128ve.pdf. [Accessed: 14-
Feb-2015]

[94] Freescale Semiconductor, ‘MPC8245 Integrated Processor Reference Manual’.
[Online]. Available:
http://cache.freescale.com/files/product/doc/MPC8245UM.pdf. [Accessed: 16-
Feb-2015]

[95] ‘Hidden ProCurve commands — Evil Routers’. [Online]. Available:
http://evilrouters.net/2010/04/06/hidden-procurve-commands/. [Accessed: 13-
Feb-2015]

[96] Texas Instruments, ‘TL16C752B | UART | Interface | Description & parametrics’.
[Online]. Available: http://www.ti.com/product/tl16c752b. [Accessed: 17-Feb-
2015]

[97] ‘Management and Configuration Guide - 59906023-1004-Management-Guide.pdf’,
20004-10. [Online]. Available:
ftp://ftp.hp.com/pub/networking/software/59906023-1004-Management-
Guide.pdf. [Accessed: 13-Feb-2015]

[98] ‘am29lv065d_23544c3.book - AM29LV065D_EOL_23544c3.pdf’. [Online].
Available:
http://www.spansion.com/Support/Datasheets/AM29LV065D_EOL_23544c3.pdf
. [Accessed: 13-Feb-2015]

[99] ‘S29GL064A_brief.indd - S29GL064A_overview.pdf’. [Online]. Available:
http://www.spansion.com/Support/Related%20Product%20Info/S29GL064A_ove
rview.pdf. [Accessed: 17-Feb-2015]

[100] ‘Support – Manuals - HP ProCurve Networking’. [Online]. Available:
http://www.hp.com/rnd/support/manuals/2800.htm. [Accessed: 17-Feb-2015]

References| 109

[101] ProCurve Networking, ‘2600-2800-4100-6108-Management Configuration Guide’.
[Online]. Available: http://ftp.hp.com/pub/networking/software/2600-2800-
4100-6108-MgmtConfig-Oct2005-59906023.pdf. [Accessed: 17-Feb-2015]

[102] HP, ‘Hardening ProCurve Switches -
Hardening_ProCurve_Switches_White_Paper.pdf’. [Online]. Available:
http://www.hp.com/rnd/pdfs/Hardening_ProCurve_Switches_White_Paper.pdf.
[Accessed: 17-Feb-2015]

[103] ‘Configuring Username and Password Security - 6400-5300-4200-3400-Security-
Oct2005-Ch-02-Passwords.pdf’. [Online]. Available:
ftp://ftp.hp.com/pub/networking/software/6400-5300-4200-3400-Security-
Oct2005-Ch-02-Passwords.pdf. [Accessed: 20-Apr-2015]

[104] Cisco Systems, ‘Reset a Cisco Router to Factory Default Settings - Cisco’, 02-Aug-
2006. [Online]. Available: http://www.cisco.com/c/en/us/support/docs/ios-nx-
os-software/ios-software-releases-123-mainline/46509-factory-default.html.
[Accessed: 04-Jan-2015]

[105] ‘Resetting Catalyst Switches to Factory Defaults - Cisco’. [Online]. Available:
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-2900-xl-series-
switches/24328-156.html. [Accessed: 07-Jan-2015]

Appendix A | 111

Appendices

The appendices contains procedures, console output listings, and source code relevant to this
thesis project.

Appendix A | 113

Appendix A. List of Erase procedures

This section contains the list of erase procedures referenced in the documents. Each procedure has a
unique name.

ERASE
PROCEDURE

CISCO_IOS_1

Type: Vendor Recommendation

Source: Reset a Cisco Router to Factory Default Settings, (document ID 46509) [104] (method 1)

Link

Applies to: Cisco router running IOS 12.3 Mainline

Prerequisites: Router CLI is in “enable” mode

Proposed
Procedure:

router#configure terminal

router(config)#config-register 0x2102

router(config)#end

router#write erase

router#reload

System configuration has been modified. Save? [yes/no]: n
Proceed with reload? [confirm]

Once the router reloads, the System Configuration Dialog appears.

 --- System Configuration Dialog ---
Would you like to enter the initial configuration dialog? [yes/no]:

“The router is now reset to the original factory defaults.”

Warning: Above procedure is proved unsafe in Section 4.1.8

ERASE
PROCEDURE

CISCO_IOS_2

Type: Vendor Recommendation

Source: Reset a Cisco Router to Factory Default Settings, (document ID 46509) [104] (method 2)

Link

Applies to: Cisco router running IOS 12.3 Mainline

Prerequisites: Router CLI is in global config mode

Proposed
Procedure:

http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-123-mainline/46509-factory-default.html
http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-123-mainline/46509-factory-default.html

114 | List of Erase procedures

router(config)#config-register 0x2142

router#reload

System configuration has been modified. Save? [yes/no]: no

Proceed with reload? [confirm]

[reload…]

Would you like to enter initial configuration dialog? no

router(config)#config-register 0x2102

router#write memory

“The router is now reset to the original factory defaults.” Except warm-reboot and memory-size iomem
setting.

Warning: Above procedure is proved unsafe in Section 4.1.8

List of Erase procedures | 115

ERASE
PROCEDURE

HP_2626_CLI

Type: Vendor Recommendation

Source: Management and Configuration Guide

[97pp. C–43 Section Restoring the Factory-Default Configuration]

Applies to: Hp Procurve Switches: 2600 Series, 2600-PWR Series, 2800 Series, 4100gl Series, 6108

Prerequisites: This command operates at any level except the Operator level.

Proposed
Procedure:

erase startup-config

Vendor declaration:

“Deletes the startup-config file in flash so that the switch will reboot
with its factory-default configuration. The erase startup-config command
does not clear passwords.”

Warning: Above procedure is proved unsafe in Section 4.2.6

ERASE
PROCEDURE

HP_2626_BUTTON

Type: Vendor Recommendation

Source: Management and Configuration Guide

[97pp. C–43 Section Restoring the Factory-Default Configuration]

Applies to: Hp Procurve Switches: 2600 Series, 2600-PWR Series, 2800 Series, 4100gl Series, 6108

Prerequisites: None

Proposed
Procedure:

To execute the factory default reset, perform these steps:

1. Using pointed objects, simultaneously press both the Reset and Clear buttons on the front
of the switch.

2. Continue to press the Clear button while releasing the Reset button.

3. When the Self Test LED begins to flash, release the Clear button. The switch will then
complete its self test and begin operating with the configuration restored to the factory
default settings.

Warning: Above procedure it proved unsafe in Section 4.2.6

116 | List of Erase procedures

ERASE
PROCEDURE

HP_PROCURVE_SANITTY

Type: Method developed as part of this thesis

Source: This thesis

Applies to: J9088A ProCurve Switch 2610 and J4900A ProCurve Switch 2626

Possible other Procurve models too, even though it has not been confirmed.

Prerequisites: None

Proposed
Procedure:

Perform the HP_2626_BUTTON procedure to bypass the current manager password and allow access to CLI.

Execute the “sanitty.exe sanitize” command

Appendix B | 117

Appendix B. Excel function generating random string markers

'adapted from http://www.extendoffice.com/documents/excel/642-excel-generate-
random-string.html#vba

Public Function RandStr(Length As Integer)

'Update 20131107

Dim Rand As String

Application.Volatile

Do

i = i + 1

Randomize

'Rand = Rand & Chr(Int((85) * Rnd + 38))

If (Rnd > 0.5) Then

Rand = Rand & Chr(Int((26) * Rnd + 65))

Else

Rand = Rand & Chr(Int((26) * Rnd + 97))

End If

Loop Until i = Length

RandStr = "MARK" + Rand

End Function

Appendix C | 119

Appendix C. CISCO1712 investigations

Output listing 6-1: CISCO1712 HW explore markers injection
Router#enable

Router#conf term

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#

Router(config)#snmp-server community MARKWHKMcflpXC rw

Router(config)#

Router(config)#exit

Router#copy running startup

Destination filename [startup-config]?

Building configuration...

*May 9 14:31:24.275: %SYS-5-CONFIG_I: Configured from console by console[OK]

Router#vlan database

Router(vlan)#vtp password MARKlscAlvXimn

Setting device VLAN database password to MARKlscAlvXimn.

Router(vlan)#exit

APPLY completed.

Exiting....

Router#

Router#

Router##verification

Router#show startup-config | include snmp-server

snmp-server community MARKWHKMcflpXC RW

Router#more flash:/vlan.dat

:[^P

^@^@^@^B^B^@^
@^@^@^@^@^@^@^@^@^@^A000000000000^B$Jn

h;in^D^NO'^BU^NMARKlscAlvXimn^@
^@^E^B^B^@^@^B\PPdefault^@^@^@^@^@^
@^A^A^E\^@^A^@^A^F!^^@^@^@^@^Cj^Ck^@^@^@^@^
@^@^Lfddi-default^@^B^A^E\^Cj^@^A

^^@^@^@^@^@^A^Ck^B^@^@^@^@^@^Rtoken-ring-
default^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^C^A^E\^Ck^@^A

^K^@^@^A^@^Cm^@^A^Cj^B^A^@^@^Ofddinet-
default^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^@^D^A^E\^Cl^@^A

^L^^A^B^@^@^@^@^@^@^B^@^@^@^@^@

trnet-default^@^E^A^E\^Cm^@^A

^^A^B^@^@^@^@^@^@^B^@^@^@^@^@^B\O@^@^@^@^A^@^@^^B`+T^E^B^@^@^Cj^Ck^B\O^L^@^@^Cj^@^@
^@^P^B\N
^A^A^@^@^D^A^@^@^E^B^@^@^@^A^Ck^B\Nh^@^@^Ck^@^@^@^T^B\P`^A^A^@^@^B^A^@^A^D^A^Cm^E^B
^@^@^@^A^Cj^B\M$^@^@^Cl^@^@^^B`*\^B^A^@^A^C^A^@^B^@^@^@^@^@^@^Cm^@^@^^B`+^L^B^A^@^A
^C^A^@^B

Router#

120 | CISCO1712 investigations

Output listing 6-2: CISCO1712 Rommon PRIV mode command set
rommon 3 > ?

addrloop walk 1 thru range of addresses

alias set and display aliases command

alter alter locations in memory

berrscan scan range of addresses for bus errors

boot boot up an external process

break set/show/clear the breakpoint

call call a subroutine at address with converted hex args

cat concatenate files

checksum checksum a block of memory

clrerr clear the error log

compare compare two blocks of memory

confreg configuration register utility

cont continue executing a downloaded image

context display the context of a loaded image

cookie display contents of cookie PROM in hex

cpu cpu / system information and control

dev list the device table

dir list files in file system

dis display instruction stream

dnld serial download a program module

dump display a block of memory

echo monitor echo command

errlog display the error log

fdump file dump utility

fill fill a block of memory

flash flash services command

frame print out a selected stack frame

help monitor builtin command help

history monitor command history

ifill fill a block of memory w/incrementing pattern

initfs re-initialize the file system access structures

jump call a subroutine at address with argc/argv

launch launch a downloaded image

memdebug write/read/verify scope loop

meminfo main memory information

memloop write or read scope loop

memtest simple memory test

menu main diagnostic menu

move move a block of memory

repeat repeat a monitor command

reset system reset

set display the monitor variables

sleep millisecond sleep command

speed timed performance loop

stack produce a stack trace

sync write monitor environment to NVRAM

sysret print out info from last system return

tcal timer calibration test

tftpdnld tftp image download

tscope timer scope loop

unalias unset an alias

CISCO1712 investigations | 121

unset unset a monitor variable

watchdog test watchdog rebooting of the box

xmodem x/ymodem image download

rommon 4 > menu

 Main Diagnostic Menu

a: alter diag flags

b: basic utilities

c: do all diags in this menu

d: do group of diags in this menu

e: bus error test

f: monitor image checksum test

g: internal interrupt test

h: ip state test

i: timer interrupt test

j: size main memory

k: main memory test

l: main memory refresh test

m: flash memory test

n: aux loopback test

o: aux port interrupt test

p: data cache test

q: mpc862 test

r: nvram test

x: return to previous menu

FLAGS: Continuous OFF Stop on error OFF Loop on error OFF Quiet mode OFF

enter Main Diagnostic Menu item > b

 Diagnostic Utilities Menu

a: alter memory

b: bus error scan

c: compare memory block

d: display memory

e: move memory block

f: fill memory

g: memory test

h: memory read or write loop

i: memory debug loop

j: address loop

k: console break interrupt test

l: system reset

m: AUX port echo test

n: serial cookie utility

o: show 862 registers

x: return to previous menu

enter Diagnostic Utilities Menu item >

122 | CISCO1712 investigations

Output listing 6-3: CISCO1712 PRIV NVRAM Dump (from memory offset 0x68000000) truncated at 0xBF0 bytes.
rommon 16 > dump 0x68000000 0xfff

68000000 8d74 0101 0013 7f3b df68 3300 01ff 0448 .t.....;.h3....H

68000010 0011 0000 0000 0000 0000 464f 4309 1030FOC..0

68000020 5737 5001 0100 0000 0000 00ff ffff 5804 W7P...........X.

68000030 4923 0901 ffff ffff ffff ffff ffff ffff I#..............

68000040 ffff ffff ffff ffff ffff ffff ffff ffff

68000050 ffff ffff ffff ffff ffff ffff ffff ffff

68000060 ffff ffff ffff ffff ffff ffff ffff ffff

68000070 ffff ffff ffff ffff ffff ffff ffff ffff

68000080 ffff 1342 ffff ffff 0000 0000 0000 0000 ...B............

68000090 2102 defd feed face 0000 0000 0000 000a !...............

680000a0 0000 0000 0000 0000 0000 0000 0000 0000

680000b0 0000 0000 0000 0000 0000 0000 0000 0000

680000c0 0000 0000 0000 0000 0000 0013 0000 0000

680000d0 0000 0000 0000 0000 0000 0000 0000 0000

680000e0 0000 0000 0000 0000 0000 0000 0000 0000

680000f0 0000 0000 0000 0000 0000 0000 0000 0000

68000100 0000 0000 0000 0000 0000 0000 0000 0000

68000110 0000 0000 0000 0000 0000 0000 0000 0000

68000120 0000 0000 0000 0000 0000 0000 0000 0000

68000130 0000 0000 0000 0000 0000 0000 0000 0000

68000140 0000 0000 0000 0000 5053 3100 726f 6d6dPS1.romm

68000150 6f6e 2021 203e 2000 5446 5450 5f43 4845 on ! > .TFTP_CHE

68000160 434b 5355 4d00 3100 5341 5645 5f32 5f52 CKSUM.1.SAVE_2_R

68000170 5453 0031 333a 3536 3a33 3920 5554 4320 TS.13:56:39 UTC

68000180 5475 6520 4d61 7920 3920 3230 3036 003f Tue May 9 2006.?

68000190 0032 3800 524f 4d5f 5045 5253 4953 5445 .28.ROM_PERSISTE

680001a0 4e54 5f55 5443 0031 3134 3731 3833 3337 NT_UTC.114718337

680001b0 3500 5245 545f 325f 5254 5300 0052 414e 5.RET_2_RTS..RAN

680001c0 444f 4d5f 4e55 4d00 3433 3133 3838 3338 DOM_NUM.43138838

680001d0 3100 4253 4900 3000 5245 545f 325f 5243 1.BSI.0.RET_2_RC

680001e0 414c 5453 0000 0000 524f 4d5f 5045 5253 ALTS....ROM_PERS

680001f0 4953 5445 4e54 5f55 5443 0031 3134 3731 ISTENT_UTC.11471

68000200 3833 3337 3500 0038 3132 3633 0042 5349 83375..81263.BSI

68000210 0030 0052 4554 5f32 5f52 4341 4c54 5300 .0.RET_2_RCALTS.

68000220 0053 4156 455f 325f 5254 5300 3133 3a35 .SAVE_2_RTS.13:5

68000230 363a 3339 2055 5443 2054 7565 204d 6179 6:39 UTC Tue May

68000240 2039 2032 3030 3600 3f00 3000 0053 0000 9 2006.?.0..S..

68000250 0045 5200 3130 2e31 2e31 2e31 0000 0000 .ER.10.1.1.1....

68000260 0000 0000 0000 0000 0000 0000 0000 0000

68000270 0000 0000 0000 0000 0000 0000 0000 0000

68000280 0000 0000 0000 0000 0000 0000 0000 0000

68000290 0000 0000 0000 0000 0000 0000 0000 0000

680002a0 0000 0000 0000 0000 0000 0000 0000 0000

680002b0 0000 0000 0000 0000 0000 0000 0000 0000

680002c0 0000 0000 0000 0000 0000 0000 0000 0000

680002d0 0000 0000 0000 0000 0000 0000 0000 0000

680002e0 0000 0000 0000 0000 0000 0000 0000 0000

680002f0 0000 0000 0000 0000 0000 0000 0000 0000

68000300 0000 0000 0000 0000 0000 0000 0000 0000

68000310 0000 0000 0000 0000 0000 0000 0000 0000

68000320 0000 0000 0000 0000 0000 0000 0000 0000

CISCO1712 investigations | 123

68000330 0000 0000 0000 0000 0000 0000 0000 0000

68000340 0000 0000 0000 0000 0000 0000 0000 0000

68000350 0000 0000 0000 0000 0000 0000 0000 0000

68000360 0000 0000 0000 0000 0000 0000 0000 0000

68000370 0000 0000 0000 0000 0000 0000 0000 0000

68000380 0000 0000 0000 0000 0000 0000 0000 0000

68000390 0000 0000 0000 0000 0000 0000 0000 0000

680003a0 0000 0000 0000 0000 0000 0000 0000 0000

680003b0 0000 0000 0000 0000 0000 0000 0000 0000

680003c0 0000 0000 0000 0000 0000 0000 0000 0000

680003d0 0000 0000 0000 0000 0000 0000 0000 0000

680003e0 0000 0000 0000 0000 0000 0000 0000 0000

680003f0 0000 0000 0000 0000 0000 0000 0000 0000

68000400 0000 0000 0000 0000 0000 0000 0000 0000

68000410 0000 0000 0000 0000 0000 0000 0000 0000

68000420 0000 0000 0000 0000 0000 0000 0000 0000

68000430 0000 0000 0000 0000 0000 0000 0000 0000

68000440 0000 0000 0000 0000 7200 7265 7065 6174r.repeat

68000450 0068 0068 6973 746f 7279 003f 0068 656c .h.history.?.hel

68000460 7000 6200 626f 6f74 006c 7300 6469 7200 p.b.boot.ls.dir.

68000470 6900 7265 7365 7400 6b00 7374 6163 6b00 i.reset.k.stack.

68000480 0000 0000 0000 0000 0000 0000 0000 0000

68000490 0000 0000 0000 0000 0000 0000 0000 0000

680004a0 0000 0000 0000 0000 0000 0000 0000 0000

680004b0 0000 0000 0000 0000 0000 0000 0000 0000

680004c0 0000 0000 0000 0000 0000 0000 0000 0000

680004d0 0000 0000 0000 0000 0000 0000 0000 0000

680004e0 0000 0000 0000 0000 0000 0000 0000 0000

680004f0 0000 0000 0000 0000 0000 0000 0000 0000

68000500 0000 0000 0000 0000 0000 0000 0000 0000

68000510 0000 0000 0000 0000 0000 0000 0000 0000

68000520 0000 0000 0000 0000 0000 0000 0000 0000

68000530 0000 0000 0000 0000 0000 0000 0000 0000

68000540 0000 0000 0000 0000 0000 0000 0000 0000

68000550 0000 0000 0000 0000 0000 0000 0000 0000

68000560 0000 0000 0000 0000 0000 0000 0000 0000

68000570 0000 0000 0000 0000 0000 0000 0000 0000

68000580 0000 0000 0000 0000 0000 0000 0000 0000

68000590 0000 0000 0000 0000 0000 0000 0000 0000

680005a0 0000 0000 0000 0000 0000 0000 0000 0000

680005b0 0000 0000 0000 0000 0000 0000 0000 0000

680005c0 0000 0000 0000 0000 0000 0000 0000 0000

680005d0 0000 0000 0000 0000 0000 0000 0000 0000

680005e0 0000 0000 0000 0000 0000 0000 0000 0000

680005f0 0000 0000 0000 0000 0000 0000 0000 0000

68000600 0000 0000 0000 0000 0000 0000 0000 0000

68000610 0000 0000 0000 0000 0000 0000 0000 0000

68000620 0000 0000 0000 0000 0000 0000 0000 0000

68000630 0000 0000 0000 0000 0000 0000 0000 0000

68000640 0000 0000 0000 0000 0000 0000 0000 0000

68000650 0000 0000 0000 0000 4331 3730 3020 536fC1700 So

68000660 6674 7761 7265 2028 4331 3730 302d 4b39 ftware (C1700-K9

68000670 4f33 5359 372d 4d29 2c20 5665 7273 696f O3SY7-M), Versio

124 | CISCO1712 investigations

68000680 6e20 3132 2e33 2831 3129 5439 2c20 5245 n 12.3(11)T9, RE

68000690 4c45 4153 4520 534f 4654 5741 5245 2028 LEASE SOFTWARE (

680006a0 6663 3329 0a54 6563 686e 6963 616c 2053 fc3).Technical S

680006b0 7570 706f 7274 3a20 6874 7470 3a2f 2f77 upport: http://w

680006c0 7777 2e63 6973 636f 2e63 6f6d 2f74 6563 ww.cisco.com/tec

680006d0 6873 7570 706f 7274 0a43 6f6d 7069 6c65 hsupport.Compile

680006e0 6420 5475 6520 3133 2d44 6563 2d30 3520 d Tue 13-Dec-05

680006f0 3035 3a32 3020 6279 2063 6361 690a 496d 05:20 by ccai.Im

68000700 6167 6520 7465 7874 2d62 6173 653a 2030 age text-base: 0

68000710 7838 3030 3038 3136 432c 2064 6174 612d x8000816C, data-

68000720 6261 7365 3a20 3078 3831 3543 3544 3743 base: 0x815C5D7C

68000730 0a0a 0000 0000 0000 0000 0000 0000 0000

68000740 0000 0000 0000 0000 0000 0000 0000 0000

68000750 0000 0000 0000 0000 0000 bdef 8d74 0101t..

68000760 0013 7f3b df68 3300 01ff 0448 0011 0000 ...;.h3....H....

68000770 0000 0000 0000 464f 4309 1030 5737 5001FOC..0W7P.

68000780 0100 0000 0000 00ff ffff 5804 4923 0901X.I#..

68000790 ffff ffff ffff ffff ffff ffff ffff ffff

680007a0 ffff ffff ffff ffff ffff ffff ffff ffff

680007b0 ffff ffff ffff ffff ffff ffff ffff ffff

680007c0 ffff ffff ffff ffff ffff ffff ffff ffff

680007d0 ffff ffff ffff ffff ffff ffff ffff 1342B

680007e0 ffff ffff ffff ffff ffff ffff ffff ffff

680007f0 ffff ffff ffff ffff ffff ffff ffff ffff

68000800 ffff ffff ffff f0a5 abcd 0001 6a0e 0c03j...

68000810 0000 0024 826d b87c 0000 0328 0000 0000 ...$.m.|...(....

68000820 0000 0000 0000 0000 0000 0000 0a21 0a76!.v

68000830 6572 7369 6f6e 2031 322e 330a 7365 7276 ersion 12.3.serv

68000840 6963 6520 7469 6d65 7374 616d 7073 2064 ice timestamps d

68000850 6562 7567 2064 6174 6574 696d 6520 6d73 ebug datetime ms

68000860 6563 0a73 6572 7669 6365 2074 696d 6573 ec.service times

68000870 7461 6d70 7320 6c6f 6720 6461 7465 7469 tamps log dateti

68000880 6d65 206d 7365 630a 6e6f 2073 6572 7669 me msec.no servi

68000890 6365 2070 6173 7377 6f72 642d 656e 6372 ce password-encr

680008a0 7970 7469 6f6e 0a21 0a68 6f73 746e 616d yption.!.hostnam

680008b0 6520 526f 7574 6572 0a21 0a62 6f6f 742d e Router.!.boot-

680008c0 7374 6172 742d 6d61 726b 6572 0a62 6f6f start-marker.boo

680008d0 742d 656e 642d 6d61 726b 6572 0a21 0a21 t-end-marker.!.!

680008e0 0a6d 6d69 2070 6f6c 6c69 6e67 2d69 6e74 .mmi polling-int

680008f0 6572 7661 6c20 3630 0a6e 6f20 6d6d 6920 erval 60.no mmi

68000900 6175 746f 2d63 6f6e 6669 6775 7265 0a6e auto-configure.n

68000910 6f20 6d6d 6920 7076 630a 6d6d 6920 736e o mmi pvc.mmi sn

68000920 6d70 2d74 696d 656f 7574 2031 3830 0a6e mp-timeout 180.n

68000930 6f20 6161 6120 6e65 772d 6d6f 6465 6c0a o aaa new-model.

68000940 6970 2073 7562 6e65 742d 7a65 726f 0a21 ip subnet-zero.!

68000950 0a21 0a21 0a21 0a69 7020 6365 660a 6970 .!.!.!.ip cef.ip

68000960 2069 7073 2070 6f20 6d61 782d 6576 656e ips po max-even

68000970 7473 2031 3030 0a6e 6f20 6674 702d 7365 ts 100.no ftp-se

68000980 7276 6572 2077 7269 7465 2d65 6e61 626c rver write-enabl

68000990 650a 210a 210a 210a 210a 2120 0a6e 6f20 e.!.!.!.!.! .no

680009a0 6372 7970 746f 2069 7361 6b6d 7020 6363 crypto isakmp cc

680009b0 6d0a 210a 210a 210a 696e 7465 7266 6163 m.!.!.!.interfac

680009c0 6520 4252 4930 0a20 6e6f 2069 7020 6164 e BRI0. no ip ad

CISCO1712 investigations | 125

680009d0 6472 6573 730a 2073 6875 7464 6f77 6e0a dress. shutdown.

680009e0 210a 696e 7465 7266 6163 6520 4661 7374 !.interface Fast

680009f0 4574 6865 726e 6574 300a 2069 7020 6164 Ethernet0. ip ad

68000a00 6472 6573 7320 6468 6370 0a20 6475 706c dress dhcp. dupl

68000a10 6578 2061 7574 6f0a 2073 7065 6564 2061 ex auto. speed a

68000a20 7574 6f0a 210a 696e 7465 7266 6163 6520 uto.!.interface

68000a30 4661 7374 4574 6865 726e 6574 310a 210a FastEthernet1.!.

68000a40 696e 7465 7266 6163 6520 4661 7374 4574 interface FastEt

68000a50 6865 726e 6574 320a 210a 696e 7465 7266 hernet2.!.interf

68000a60 6163 6520 4661 7374 4574 6865 726e 6574 ace FastEthernet

68000a70 330a 210a 696e 7465 7266 6163 6520 4661 3.!.interface Fa

68000a80 7374 4574 6865 726e 6574 340a 210a 696e stEthernet4.!.in

68000a90 7465 7266 6163 6520 566c 616e 310a 206e terface Vlan1. n

68000aa0 6f20 6970 2061 6464 7265 7373 0a21 0a69 o ip address.!.i

68000ab0 7020 636c 6173 736c 6573 730a 6e6f 2069 p classless.no i

68000ac0 7020 6874 7470 2073 6572 7665 720a 6e6f p http server.no

68000ad0 2069 7020 6874 7470 2073 6563 7572 652d ip http secure-

68000ae0 7365 7276 6572 0a21 0a21 0a21 0a73 6e6d server.!.!.!.snm

68000af0 702d 7365 7276 6572 2063 6f6d 6d75 6e69 p-server communi

68000b00 7479 204d 4152 4b57 484b 4d63 666c 7058 ty MARKWHKMcflpX

68000b10 4320 5257 0a21 0a21 0a63 6f6e 7472 6f6c C RW.!.!.control

68000b20 2d70 6c61 6e65 0a21 0a21 0a6c 696e 6520 -plane.!.!.line

68000b30 636f 6e20 300a 6c69 6e65 2061 7578 2030 con 0.line aux 0

68000b40 0a6c 696e 6520 7674 7920 3020 340a 210a .line vty 0 4.!.

68000b50 656e 640a fedc 0001 0000 035c 826d b8ba end........\.m..

68000b60 0000 002e 0a6b 6572 6265 726f 7320 7061kerberos pa

68000b70 7373 776f 7264 200a 736e 6d70 2d73 6572 ssword .snmp-ser

68000b80 7665 7220 6863 2070 6f6c 6c20 300a 656e ver hc poll 0.en

68000b90 640a 726f 7320 7061 7373 776f 7264 200a d.ros password .

68000ba0 736e 6d70 2d73 6572 7665 7220 6863 2070 snmp-server hc p

68000bb0 6f6c 6c20 300a 656e 640a 0000 0000 0000 oll 0.end.......

68000bc0 0000 0000 0000 0000 0000 0000 0000 0000

68000bd0 0000 0000 0000 0000 0000 0000 0000 0000

68000be0 0000 0000 0000 0000 0000 0000 0000 0000

68000bf0 0000 0000 0000 0000 0000 0000 0000 0000

<snip>

126 | CISCO1712 investigations

Output listing 6-4: CISCO1712 cookie fields
rommon 18 > cookie

View/alter bytes of serial cookie by field --

Input hex byte(s) or: CR -> skip field; ? -> list values

byte 0x00 - version: 01

 >

byte 0x01 - vendor (Recommended value: 01): 01

 >

bytes 0x02-0x07 - ethernet Hw address: 00 13 7f 3b df 68

 >

byte 0x08-0x08 - processor (Recommended value: 33): 33

 >

byte 0x09-0x09 - nvram size (Recommended values: 32K - 00, 64K - 01): 00

 >

byte 0x0a-0x0a - cpu speed (Recommended value: 50Mhz - 01): 01

 >

byte 0x0b-0x0b - unused: ff

 >

bytes 0x0c-0x0d - on board PM ID (Recommended value for 1720: 00 b2): 04 48

 >

bytes 0x0e-0x0f - mac address allocated: 00 11

 >

bytes 0x10-0x17: 00 00 00 00 00 00 00 00

 >

bytes 0x18-0x22: 46 4f 43 09 10 30 57 37 50 01 01

 >

bytes 0x23-0x24 - deviation: 00 00

 >

bytes 0x25-0x2c: 00 00 00 00 ff ff ff 58

 >

bytes 0x2d-0x2d - board config (Recommended value: 04): 04

 >

bytes 0x2e-0x37: 49 23 09 01 ff ff ff ff ff ff

 >

bytes 0x38-0x3f: ff ff ff ff ff ff ff ff

 >

CISCO1712 investigations | 127

bytes 0x40-0x47: ff ff ff ff ff ff ff ff

 >

bytes 0x48-0x4f: ff ff ff ff ff ff ff ff

 >

bytes 0x50-0x57: ff ff ff ff ff ff ff ff

 >

bytes 0x58-0x5f: ff ff ff ff ff ff ff ff

 >

bytes 0x60-0x67: ff ff ff ff ff ff ff ff

 >

bytes 0x68-0x6f: ff ff ff ff ff ff ff ff

 > ?

<CR> to skip field; otherwise, enter 8 byte(s)

bytes 0x68-0x6f: ff ff ff ff ff ff ff ff

 >

bytes 0x70-0x77: ff ff ff ff ff ff ff ff

 >

bytes 0x78-0x7f: ff ff ff ff ff ff ff ff

 >

rommon 19 >

128 | CISCO1712 investigations

Output listing 6-5: Rommon "show 862 registers"
 Diagnostic Utilities Menu

a: alter memory

b: bus error scan

c: compare memory block

d: display memory

e: move memory block

f: fill memory

g: memory test

h: memory read or write loop

i: memory debug loop

j: address loop

k: console break interrupt test

l: system reset

m: AUX port echo test

n: serial cookie utility

o: show 862 registers

x: return to previous menu

enter Diagnostic Utilities Menu item > o

MPC862 Register Dump: Registers at 0xff000000

SIU - System Interface Unit :

 siu_mcr : 0x00230440

 siu_sypcr : 0xffffff88

 siu_swt : 0xffff0000

 siu_swsr : 0x00000000

 siu_sipend : 0x00000000

 siu_sienmask : 0x20000000

 siu_siel : 0x00000000

 siu_sivec : 0x3c000000

 siu_tesr : 0x00002030

 sdma_sdcr : 0x00000001

PCMCIA :

 pcmcia_pbr0 : 0x00000001

 pcmcia_por0 : 0x80030044

 pcmcia_pbr1 : 0x00000014

 pcmcia_por1 : 0x00000010

 pcmcia_pbr2 : 0x00000000

 pcmcia_por2 : 0x80002444

 pcmcia_pbr3 : 0x00000000

 pcmcia_por3 : 0x88042000

 pcmcia_pbr4 : 0x00800000

 pcmcia_por4 : 0x00012a6c

 pcmcia_pbr5 : 0x00000000

 pcmcia_por5 : 0x000c1200

 pcmcia_pbr6 : 0x00000000

 pcmcia_por6 : 0x00000240

 pcmcia_pbr7 : 0x20000004

CISCO1712 investigations | 129

 pcmcia_por7 : 0x00000610

 pcmcia_pgcra : 0x00000000

 pcmcia_pgcrb : 0x00000000

 pcmcia_pscr : 0xfe70fe40

 pcmcia_pipr : 0xff00ff00

 pcmcia_per : 0x00000000

MEMC - Memory Controller :

 memc_br0 : 0xfff00401
 memc_or0 : 0xfff005a6
 memc_br1 : 0x00000081
 memc_or1 : 0x7e000600
 memc_br2 : 0x040000c1
 memc_or2 : 0x7f000600
 memc_br3 : 0x050000c1
 memc_or3 : 0x7f000600
 memc_br4 : 0x02000081
 memc_or4 : 0x7e000600
 memc_br5 : 0x00000000
 memc_or5 : 0x00000000
 memc_br6 : 0x60000901
 memc_or6 : 0xfe000190
 memc_br7 : 0x68000401
 memc_or7 : 0xfff001a8

 memc_mar : 0x00000088

 memc_mcr : 0x4080003f

 memc_mamr : 0x0c804111

 memc_mbmr : 0x06804111

 memc_mstat : 0x00000000

 memc_mptpr : 0x00000400

 memc_mdr : 0xfffffc05

SIMT - System Integration Timers :

 simt_tbscr : 0x00000001

 simt_tbreff0 : 0x7d6b53ea

 simt_tbreff1 : 0xf5fbe112

 simt_rtcsc : 0x00000080

 simt_rtc : 0x5c3450ab

 simt_rtsec : 0x42d80000

 simt_rtcal : 0xca7d41ce

 simt_piscr : 0x00000000

 simt_pitc : 0xfdde0000

 simt_pitr : 0xdfff0000

CLKR - Clocks and Reset :

 clkr_sccr : 0x03820000

 clkr_plprcr : 0x001050c0

 clkr_rsr : 0x00000000

SIMTK - System Integration Timer Keys :

130 | CISCO1712 investigations

 simtk_tbscrk : 0x00010000

 simtk_tbreff0k : 0x7d6b53ea

 simtk_tbreff1k : 0xf5fbe112

 simtk_tbk : 0x0001cf53

 simtk_rtcsck : 0x00800000

 simtk_rtck : 0x5c3450ab

 simtk_rtseck : 0x42d80000

 simtk_rtcalk : 0xca7d41ce

 simtk_piscrk : 0x00000000

 simtk_pitck : 0xfdde0000

CLKRK - Clocks and Reset Keys :

 clkrk_sccrk : 0x03820000

 clkrk_plprcrk : 0x001050c0

 clkrk_rsrk : 0x00000000

I2C :

 i2c_i2mod : 0x00000000

 i2c_i2add : 0x00000000

 i2c_i2brg : 0x000000ff

 i2c_i2com : 0x00000000

 i2c_i2cer : 0x00000000

 i2c_i2cmr : 0x00000000

DMA :

 dma_sdar : 0x3c67ea42

 dma_sdsr : 0x00000000

 dma_sdmr : 0x00000000

 dma_idsr1 : 0x00000000

 dma_idmr1 : 0x00000000

 dma_idsr2 : 0x00000000

 dma_idmr2 : 0x00000000

CPIC - CPM Interrupt Controller :

 cpic_civr : 0x00000000

 cpic_cicr : 0x00007f80

 cpic_cipr : 0x00000040

 cpic_cimr : 0x00000000

 cpic_cisr : 0x00000000

PIO - Parallel I/O :

 pio_padir : 0x00000000

 pio_papar : 0x00000000

 pio_paodr : 0x00000000

 pio_padat : 0x0000ffff

 pio_pcdir : 0x00000000

 pio_pcpar : 0x00000000

CISCO1712 investigations | 131

 pio_pcso : 0x00000000

 pio_pcdat : 0x00000dfe

 pio_pcint : 0x00000000

 pio_pddir : 0x00001fff

 pio_pdpar : 0x00001fff

 pio_pddat : 0x00001cc8

TMR - CPM Timers :

 tmr_tgcr : 0x00000000

 tmr_tmr1 : 0x00000000

 tmr_tmr2 : 0x00000000

 tmr_trr1 : 0x0000ffff

 tmr_trr2 : 0x0000ffff

 tmr_tcr1 : 0x00000000

 tmr_tcr2 : 0x00000000

 tmr_tcn1 : 0x00000000

 tmr_tcn2 : 0x00000000

 tmr_tmr3 : 0x00000000

 tmr_tmr4 : 0x00000000

 tmr_trr3 : 0x0000ffff

 tmr_trr4 : 0x0000ffff

 tmr_tcr3 : 0x00000000

 tmr_tcr4 : 0x00000000

 tmr_tcn3 : 0x00000000

 tmr_tcn4 : 0x00000000

 tmr_ter1 : 0x00000000

 tmr_ter2 : 0x00000000

 tmr_ter3 : 0x00000000

 tmr_ter4 : 0x00000000

CP - Communications Processor :

 cp_cr : 0x00000000

 cp_rccr : 0x00000000

 cp_rmds : 0x00000000

 cp_rmdr : 0x00000000

 cp_rctr1 : 0x00000000

 cp_rctr2 : 0x00000000

 cp_rctr3 : 0x00000000

 cp_rctr4 : 0x00000000

 cp_rter : 0x00000000

 cp_rtmr : 0x00000000

BRG - Baud Rate Generator :

 brg_brgc1 : 0x00000000

 brg_brgc2 : 0x00000000

 brg_brgc3 : 0x00000000

 brg_brgc4 : 0x00000000

SCC[1] - Serial Communications Controller 1 :

132 | CISCO1712 investigations

 scc[index].scc_gsmrl : 0x00000000

 scc[index].scc_gsmrh : 0x00000000

 scc[index].scc_psmr : 0x00000000

 scc[index].scc_todr : 0x00000000

 scc[index].scc_dsr : 0x00007e7e

 scc[index].scc_scce : 0x00000000

 scc[index].scc_sccm : 0x00000000

 scc[index].scc_sccs : 0x00000000

SCC[2] - Serial Communications Controller 2 :

 scc[index].scc_gsmrl : 0x00000000

 scc[index].scc_gsmrh : 0x00000000

 scc[index].scc_psmr : 0x00000000

 scc[index].scc_todr : 0x00000000

 scc[index].scc_dsr : 0x00007e7e

 scc[index].scc_scce : 0x00000000

 scc[index].scc_sccm : 0x00000000

 scc[index].scc_sccs : 0x00000000

SCC[3] - Serial Communications Controller 3 :

 scc[index].scc_gsmrl : 0x00000000

 scc[index].scc_gsmrh : 0x00000000

 scc[index].scc_psmr : 0x00000000

 scc[index].scc_todr : 0x00000000

 scc[index].scc_dsr : 0x00007e7e

 scc[index].scc_scce : 0x00000000

 scc[index].scc_sccm : 0x00000000

 scc[index].scc_sccs : 0x00000000

SCC[4] - Serial Communications Controller 4 :

 scc[index].scc_gsmrl : 0x00000000

 scc[index].scc_gsmrh : 0x00000000

 scc[index].scc_psmr : 0x00000000

 scc[index].scc_todr : 0x00000000

 scc[index].scc_dsr : 0x00007e7e

 scc[index].scc_scce : 0x00000000

 scc[index].scc_sccm : 0x00000000

 scc[index].scc_sccs : 0x00000000

SMC[1] - Serial Management Controller 1 :

 smc_regs[index].smc_smcmr : 0x00000000

 smc_regs[index].smc_smce : 0x00000000

 smc_regs[index].smc_smcm : 0x00000000

SMC[2] - Serial Management Controller 2 :

 smc_regs[index].smc_smcmr : 0x00000000

 smc_regs[index].smc_smce : 0x00000000

 smc_regs[index].smc_smcm : 0x00000000

CISCO1712 investigations | 133

SPI - Serial Peripheral Interface :

 spi_spmode : 0x00000000

 spi_spie : 0x00000000

 spi_spim : 0x00000000

 spi_spcom : 0x00000000

PIP - Parallel Interface Port :

 pip_pipc : 0x00000000

 pip_ptpr : 0x00000000

 pip_pbdir : 0x00000001

 pip_pbpar : 0x00000000

 pip_pbodr : 0x00000000

 pip_pbdat : 0x0003fffe

SI - Serial Interface :

 si_simode : 0x00000000

 si_sigmr : 0x00000000

 si_sistr : 0x00000000

 si_sicmr : 0x00000000

 si_sicr : 0x00000000

 si_sirp : 0x00000000

SI_SIRAM - Serial Interface Routing RAM :

ff000c00 8e66 0000 dd0e 0000 f54a 0000 e0e3 0000 .f.......J......

ff000c10 f996 0000 eee4 0000 503a 0000 27e8 0000P:..'...

ff000c20 f84d 0000 c3fa 0000 f31d 0000 6830 0000 .M..........h0..

ff000c30 952d 0000 f1fc 0000 2b30 0000 30cb 0000 .-......+0..0...

ff000c40 aba2 0000 7fbd 0000 7af3 0000 56d0 0000z...V...

ff000c50 dc69 0000 f41a 0000 b60d 0000 fc33 0000 .i...........3..

ff000c60 9025 0000 b3ed 0000 a006 0000 9cf3 0000 .%..............

ff000c70 9a22 0000 73a0 0000 beb4 0000 205e 0000 ."..s....... ^..

ff000c80 ae66 0000 e823 0000 b856 0000 f0f1 0000 .f...#...V......

ff000c90 0c42 0000 360b 0000 f912 0000 89e4 0000 .B..6...........

ff000ca0 0b5d 0000 357f 0000 8392 0000 b615 0000 .]..5...........

ff000cb0 dcf3 0000 957d 0000 bf1e 0000 c26b 0000}.......k..

ff000cc0 a6ac 0000 c1ec 0000 f5eb 0000 1fce 0000

ff000cd0 9f76 0000 c55f 0000 7dc6 0000 c038 0000 .v..._..}....8..

ff000ce0 538a 0000 c982 0000 f46d 0000 78c8 0000 S........m..x...

ff000cf0 ddd1 0000 79f0 0000 6990 0000 861c 0000y...i.......

FEC - Fast Ethernet Controller :

 fec_addr_low : 0x98316ebd

 fec_addr_high : 0x00002b38

 fec_hash_table_high : 0x6cc433bb

 fec_hash_table_low : 0xe4426bc7

 fec_r_des_start : 0x82085440

 fec_x_des_start : 0xce3f7233

134 | CISCO1712 investigations

 fec_r_buff_size : 0x6c85d555

 fec_ecntrl : 0x20000006

 fec_ievent : 0x00000000

 fec_imask : 0x00000000

 fec_ivec : 0x00000000

 fec_r_des_active : 0x00000000

 fec_x_des_active : 0x00000000

 fec_mii_data : 0x60460100

 fec_mii_speed : 0x00000028

 fec_r_bound : 0x00000600

 fec_r_fstart : 0x00000500

 fec_x_fstart : 0x00000440

 fec_fun_code : 0x60000000

 fec_r_cntrl : 0x00000000

 fec_r_hash : 0x370005ee

 fec_x_cntrl : 0x00000000

Special Purpose Registers :

 cmpa : 0xcffbdfbc

 cmpb : 0xecdfff7c

 cmpc : 0xdf9ebf7c

 cmpd : 0xef5ffffc

 icr : 0x12200000

 der : 0x00000000

 counta : 0xb4fc0000

 countb : 0x75f90000

 cmpe : 0x98d0308a

 cmpf : 0x205081d9

 cmpg : 0xe934b88b

 cmph : 0x9db1bcd9

 lctrl1 : 0x00000000

 lctrl2 : 0x00000000

 ictrl : 0x00000007

 bar : 0x0d5faff8

 dpdr : 0x777a8277

 dpir : 0x20000000

 immr : 0xff000700

 ic_cst : 0x80000001

 ic_adr : 0x74220000

 ic_dat : 0xfff13285

 dc_cst : 0x00000000

 dc_adr : 0x00001ff0

 dc_dat : 0x53471800

 mi_ctr : 0x00000000

 mi_ap : 0x44034b32

 mi_epn : 0x00034200

 mi_twc : 0x00000129

 mi_rpn : 0x4620d40c

 mi_dbcam : 0x00000e10

 mi_dbram0 : 0x90008110

 mi_dbram1 : 0x00000010

 md_ctr : 0x04000000

CISCO1712 investigations | 135

 m_casid : 0x0000000f

 md_ap : 0x88600002

 md_epn : 0x22a45802

 m_twb : 0xfee4b228

 md_twc : 0xc279d114

 md_rpn : 0x8eff33dd

 m_tw : 0x8fdfef73

 md_dbcam : 0x72f693ef

 md_dbram0 : 0x08080c0c

enter Diagnostic Utilities Menu item >

136 | CISCO1712 investigations

Output listing 6-6: CISCO1712 MPC862 memory controller banks
****Memory Control Register # 0: Base Register 0xfff00401 Option Register
0xfff005a6

BA, Baseaddress: 0x1ffe0 11111111111100000

MA, Maskaddress: 0x1ffe0 11111111111100000

AT, Address Type: 0

PS, Portsize BIT8

Parity: false

Write Protect: false

MS, Machine Select: GPCM

Reserved (should be 0): 0

Valid: true

****Memory Control Register # 1: Base Register 0x81 Option Register 0x7e000600

BA, Baseaddress: 0x0 0

MA, Maskaddress: 0xfc00 1111110000000000

AT, Address Type: 0

PS, Portsize BIT32

Parity: false

Write Protect: false

MS, Machine Select: UPMA

Reserved (should be 0): 0

Valid: true

****Memory Control Register # 2: Base Register 0x40000c1 Option Register 0x7f000600

BA, Baseaddress: 0x800 100000000000

MA, Maskaddress: 0xfe00 1111111000000000

AT, Address Type: 0

PS, Portsize BIT32

Parity: false

Write Protect: false

MS, Machine Select: UPMB

Reserved (should be 0): 0

Valid: true

****Memory Control Register # 3: Base Register 0x50000c1 Option Register 0x7f000600

BA, Baseaddress: 0xa00 101000000000

MA, Maskaddress: 0xfe00 1111111000000000

AT, Address Type: 0

PS, Portsize BIT32

Parity: false

Write Protect: false

MS, Machine Select: UPMB

Reserved (should be 0): 0

Valid: true

****Memory Control Register # 4: Base Register 0x2000081 Option Register 0x7e000600

BA, Baseaddress: 0x400 10000000000

MA, Maskaddress: 0xfc00 1111110000000000

AT, Address Type: 0

PS, Portsize BIT32

Parity: false

Write Protect: false

CISCO1712 investigations | 137

MS, Machine Select: UPMA

Reserved (should be 0): 0

Valid: true

****Memory Control Register # 5: Base Register 0x0 Option Register 0x0

BA, Baseaddress: 0x0 0

MA, Maskaddress: 0x0 0

AT, Address Type: 0

PS, Portsize BIT32

Parity: false

Write Protect: false

MS, Machine Select: GPCM

Reserved (should be 0): 0

Valid: false

****Memory Control Register # 6: Base Register 0x60000901 Option Register
0xfe000190

BA, Baseaddress: 0xc000 1100000000000000

MA, Maskaddress: 0x1fc00 11111110000000000

AT, Address Type: 0

PS, Portsize BIT16

Parity: false

Write Protect: true

MS, Machine Select: GPCM

Reserved (should be 0): 0

Valid: true

****Memory Control Register # 7: Base Register 0x68000401 Option Register
0xfff001a8

BA, Baseaddress: 0xd000 1101000000000000

MA, Maskaddress: 0x1ffe0 11111111111100000

AT, Address Type: 0

PS, Portsize BIT8

Parity: false

Write Protect: false

MS, Machine Select: GPCM

Reserved (should be 0): 0

Valid: true

138 | CISCO1712 investigations

Output listing 6-7: CISCO1712 marker locations in NVRAM using “show memory” command
68000000: 8D740101 00136073 40EB3300 01FF0448 .t....`s@k3....H

68000010: 00110000 00000000 0000464F 43090831 FOC..1

68000020: 314A4D01 01000000 000000FF FFFF5804 1JM...........X.

68000030: 49230901 FFFFFFFF FFFFFFFF FFFFFFFF I#..............

68000040: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

68000050: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

68000060: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

68000070: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

68000080: FFFF2511 FFFFFFFF 00000000 00000000 ..%.............

68000090: 2102DEFD FEEDFACE 00000000 0000000A !.^}~mzN........

680000A0: 00000000 00000000 00000000 00000000

680000B0: 00000000 00000000 00000000 00000000

680000C0: 00000000 00000000 00000013 00000000

680000D0: 00000000 00000000 00000000 00000000

680000E0: 00000000 00000000 00000000 00000000

680000F0: 00000000 00000000 00000000 00000000

68000100: 00000000 00000000 00000000 00000000

68000110: 00000000 00000000 00000000 00000000

68000120: 00000000 00000000 00000000 00000000

68000130: 00000000 00000000 00000000 00000000

68000140: 00000000 00000000 50533100 726F6D6D PS1.romm

68000150: 6F6E2021 203E2000 54465450 5F434845 on ! > .TFTP_CHE

68000160: 434B5355 4D003100 424F4F54 0000524F CKSUM.1.BOOT..RO

68000170: 4D5F5045 52534953 54454E54 5F555443 M_PERSISTENT_UTC

68000180: 00313134 33353532 38383000 5245545F .1143552880.RET_

68000190: 325F5254 5300003F 00300054 4654505F 2_RTS..?.0.TFTP_

680001A0: 46494C45 004D4152 4B4E7541 6A514179 FILE.MARKNuAjQAy

680001B0: 4A747600 52414E44 4F4D5F4E 554D0031 Jtv.RANDOM_NUM.1

680001C0: 38363937 36383434 35004253 49003000 869768445.BSI.0.

680001D0: 5245545F 325F5243 414C5453 00005341 RET_2_RCALTS..SA

680001E0: 56455F32 5F525453 0031333A 33393A34 VE_2_RTS.13:39:4

680001F0: 30205554 43205475 65204D61 72203238 0 UTC Tue Mar 28

68000200: 20323030 36000032 38383000 00545300 2006..2880..TS.

68000210: 31333A32 383A3532 20555443 20547565 13:28:52 UTC Tue

68000220: 204D6172 20323820 32303036 00000053 Mar 28 2006...S

68000230: 0000003F 00300000 00005245 545F325F ...?.0....RET_2_

68000240: 5243414C 54530000 3F003000 00534552 RCALTS..?.0..SER

68000250: 56455200 31302E31 2E312E31 00000000 VER.10.1.1.1....

68000260: 00000000 00000000 00000000 00000000

68000270: 00000000 00000000 00000000 00000000

68000280: 00000000 00000000 00000000 00000000

68000290: 00000000 00000000 00000000 00000000

680002A0: 00000000 00000000 00000000 00000000

680002B0: 00000000 00000000 00000000 00000000

680002C0: 00000000 00000000 00000000 00000000

680002D0: 00000000 00000000 00000000 00000000

680002E0: 00000000 00000000 00000000 00000000

680002F0: 00000000 00000000 00000000 00000000

68000300: 00000000 00000000 00000000 00000000

68000310: 00000000 00000000 00000000 00000000

68000320: 00000000 00000000 00000000 00000000

68000330: 00000000 00000000 00000000 00000000

CISCO1712 investigations | 139

68000340: 00000000 00000000 00000000 00000000

68000350: 00000000 00000000 00000000 00000000

68000360: 00000000 00000000 00000000 00000000

68000370: 00000000 00000000 00000000 00000000

68000380: 00000000 00000000 00000000 00000000

68000390: 00000000 00000000 00000000 00000000

680003A0: 00000000 00000000 00000000 00000000

680003B0: 00000000 00000000 00000000 00000000

680003C0: 00000000 00000000 00000000 00000000

680003D0: 00000000 00000000 00000000 00000000

680003E0: 00000000 00000000 00000000 00000000

680003F0: 00000000 00000000 00000000 00000000

68000400: 00000000 00000000 00000000 00000000

68000410: 00000000 00000000 00000000 00000000

68000420: 00000000 00000000 00000000 00000000

68000430: 00000000 00000000 00000000 00000000

68000440: 00000000 00000000 72007265 70656174 r.repeat

68000450: 00680068 6973746F 7279003F 0068656C .h.history.?.hel

68000460: 70006200 626F6F74 006C7300 64697200 p.b.boot.ls.dir.

68000470: 69007265 73657400 6B007374 61636B00 i.reset.k.stack.

68000480: 00000000 00000000 00000000 00000000

68000490: 00000000 00000000 00000000 00000000

680004A0: 00000000 00000000 00000000 00000000

680004B0: 00000000 00000000 00000000 00000000

680004C0: 00000000 00000000 00000000 00000000

680004D0: 00000000 00000000 00000000 00000000

680004E0: 00000000 00000000 00000000 00000000

680004F0: 00000000 00000000 00000000 00000000

68000500: 00000000 00000000 00000000 00000000

68000510: 00000000 00000000 00000000 00000000

68000520: 00000000 00000000 00000000 00000000

68000530: 00000000 00000000 00000000 00000000

68000540: 00000000 00000000 00000000 00000000

68000550: 00000000 00000000 00000000 00000000

68000560: 00000000 00000000 00000000 00000000

68000570: 00000000 00000000 00000000 00000000

68000580: 00000000 00000000 00000000 00000000

68000590: 00000000 00000000 00000000 00000000

680005A0: 00000000 00000000 00000000 00000000

680005B0: 00000000 00000000 00000000 00000000

680005C0: 00000000 00000000 00000000 00000000

680005D0: 00000000 00000000 00000000 00000000

680005E0: 00000000 00000000 00000000 00000000

680005F0: 00000000 00000000 00000000 00000000

68000600: 00000000 00000000 00000000 00000000

68000610: 00000000 00000000 00000000 00000000

68000620: 00000000 00000000 00000000 00000000

68000630: 00000000 00000000 00000000 00000000

68000640: 00000000 00000000 00000000 00000000

68000650: 00000000 00000000 43313730 3020536F C1700 So

68000660: 66747761 72652028 43313730 302D4B39 ftware (C1700-K9

68000670: 4F335359 372D4D29 2C205665 7273696F O3SY7-M), Versio

68000680: 6E203132 2E332832 2958462C 20454152 n 12.3(2)XF, EAR

140 | CISCO1712 investigations

68000690: 4C592044 45504C4F 594D454E 54205245 LY DEPLOYMENT RE

680006A0: 4C454153 4520534F 46545741 52452028 LEASE SOFTWARE (

680006B0: 66633129 0A53796E 63686564 20746F20 fc1).Synched to

680006C0: 74656368 6E6F6C6F 67792076 65727369 technology versi

680006D0: 6F6E2031 322E3328 332E3929 54320A54 on 12.3(3.9)T2.T

680006E0: 41432053 7570706F 72743A20 68747470 AC Support: http

680006F0: 3A2F2F77 77772E63 6973636F 2E636F6D ://www.cisco.com

68000700: 2F746163 0A436F6D 70696C65 64205468 /tac.Compiled Th

68000710: 75203031 2D4A616E 2D303420 30333A34 u 01-Jan-04 03:4

68000720: 34206279 2065616C 796F6E00 00000000 4 by ealyon.....

68000730: 00000000 00000000 00000000 00000000

68000740: 00000000 00000000 00000000 00000000

68000750: 00000000 00000000 0000818C 8D740101 t..

68000760: 00136073 40EB3300 01FF0448 00110000 ..`s@k3....H....

68000770: 00000000 0000464F 43090831 314A4D01 FOC..11JM.

68000780: 01000000 000000FF FFFF5804 49230901 X.I#..

68000790: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

680007A0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

680007B0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

680007C0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

680007D0: FFFFFFFF FFFFFFFF FFFFFFFF FFFF2511 %.

680007E0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

680007F0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

68000800: FFFFFFFF FFFFF0A5 ABCD0001 AF820C03 p%+M../...

68000810: 00000024 82221124 00000474 00000000 ...$.".$...t....

68000820: 00000000 00000000 00000000 0A210A21 !.!

68000830: 204C6173 7420636F 6E666967 75726174 Last configurat

68000840: 696F6E20 6368616E 67652061 74203133 ion change at 13

68000850: 3A33353A 35372055 54432054 7565204D :35:57 UTC Tue M

68000860: 61722032 38203230 30360A21 204E5652 ar 28 2006.! NVR

68000870: 414D2063 6F6E6669 67206C61 73742075 AM config last u

68000880: 70646174 65642061 74203133 3A33353A pdated at 13:35:

68000890: 35392055 54432054 7565204D 61722032 59 UTC Tue Mar 2

680008A0: 38203230 30360A21 0A766572 73696F6E 8 2006.!.version

680008B0: 2031322E 330A7365 72766963 65207469 12.3.service ti

680008C0: 6D657374 616D7073 20646562 75672064 mestamps debug d

680008D0: 61746574 696D6520 6D736563 0A736572 atetime msec.ser

680008E0: 76696365 2074696D 65737461 6D707320 vice timestamps

680008F0: 6C6F6720 64617465 74696D65 206D7365 log datetime mse

68000900: 630A6E6F 20736572 76696365 20706173 c.no service pas

68000910: 73776F72 642D656E 63727970 74696F6E sword-encryption

68000920: 0A210A68 6F73746E 616D6520 4D41524B .!.hostname MARK

68000930: 674A6C42 444B6F77 624B0A21 0A626F6F gJlBDKowbK.!.boo

68000940: 742D7374 6172742D 6D61726B 65720A62 t-start-marker.b

68000950: 6F6F742D 656E642D 6D61726B 65720A21 oot-end-marker.!

68000960: 0A210A6D 6D692070 6F6C6C69 6E672D69 .!.mmi polling-i

68000970: 6E746572 76616C20 36300A6E 6F206D6D nterval 60.no mm

68000980: 69206175 746F2D63 6F6E6669 67757265 i auto-configure

68000990: 0A6E6F20 6D6D6920 7076630A 6D6D6920 .no mmi pvc.mmi

680009A0: 736E6D70 2D74696D 656F7574 20313830 snmp-timeout 180

680009B0: 0A6E6F20 61616120 6E65772D 6D6F6465 .no aaa new-mode

680009C0: 6C0A6970 20737562 6E65742D 7A65726F l.ip subnet-zero

680009D0: 0A210A21 0A210A21 0A697020 646F6D61 .!.!.!.!.ip doma

CISCO1712 investigations | 141

680009E0: 696E206E 616D6520 646F6D61 696E2E63 in name domain.c

680009F0: 6F6D0A69 70206365 660A6970 20617564 om.ip cef.ip aud

68000A00: 6974206E 6F746966 79206C6F 670A6970 it notify log.ip

68000A10: 20617564 69742070 6F206D61 782D6576 audit po max-ev

68000A20: 656E7473 20313030 0A6E6F20 6674702D ents 100.no ftp-

68000A30: 73657276 65722077 72697465 2D656E61 server write-ena

68000A40: 626C650A 210A210A 210A2120 0A6E6F20 ble.!.!.!.! .no

68000A50: 63727970 746F2069 73616B6D 7020656E crypto isakmp en

68000A60: 61626C65 0A210A21 0A210A21 0A696E74 able.!.!.!.!.int

68000A70: 65726661 63652042 5249300A 206E6F20 erface BRI0. no

68000A80: 69702061 64647265 73730A20 73687574 ip address. shut

68000A90: 646F776E 0A210A69 6E746572 66616365 down.!.interface

68000AA0: 20466173 74457468 65726E65 74300A20 FastEthernet0.

68000AB0: 69702061 64647265 73732064 6863700A ip address dhcp.

68000AC0: 20647570 6C657820 6175746F 0A207370 duplex auto. sp

68000AD0: 65656420 6175746F 0A210A69 6E746572 eed auto.!.inter

68000AE0: 66616365 20466173 74457468 65726E65 face FastEtherne

68000AF0: 74310A20 6E6F2069 70206164 64726573 t1. no ip addres

68000B00: 730A2073 68757464 6F776E0A 210A696E s. shutdown.!.in

68000B10: 74657266 61636520 46617374 45746865 terface FastEthe

68000B20: 726E6574 320A206E 6F206970 20616464 rnet2. no ip add

68000B30: 72657373 0A207368 7574646F 776E0A21 ress. shutdown.!

68000B40: 0A696E74 65726661 63652046 61737445 .interface FastE

68000B50: 74686572 6E657433 0A206E6F 20697020 thernet3. no ip

68000B60: 61646472 6573730A 20736875 74646F77 address. shutdow

68000B70: 6E0A210A 696E7465 72666163 65204661 n.!.interface Fa

68000B80: 73744574 6865726E 6574340A 206E6F20 stEthernet4. no

68000B90: 69702061 64647265 73730A20 73687574 ip address. shut

68000BA0: 646F776E 0A210A69 6E746572 66616365 down.!.interface

68000BB0: 20566C61 6E310A20 6E6F2069 70206164 Vlan1. no ip ad

68000BC0: 64726573 730A210A 69702063 6C617373 dress.!.ip class

68000BD0: 6C657373 0A6E6F20 69702068 74747020 less.no ip http

68000BE0: 73657276 65720A6E 6F206970 20687474 server.no ip htt

68000BF0: 70207365 63757265 2D736572 7665720A p secure-server.

68000C00: 210A210A 210A736E 6D702D73 65727665 !.!.!.snmp-serve

68000C10: 7220636F 6D6D756E 69747920 4D41524B r community MARK

68000C20: 79655442 47664D57 45462052 570A736E yeTBGfMWEF RW.sn

68000C30: 6D702D73 65727665 7220656E 61626C65 mp-server enable

68000C40: 20747261 70732074 74790A21 0A210A63 traps tty.!.!.c

68000C50: 6F6E7472 6F6C2D70 6C616E65 0A210A21 ontrol-plane.!.!

68000C60: 0A6C696E 6520636F 6E20300A 6C696E65 .line con 0.line

68000C70: 20617578 20300A6C 696E6520 76747920 aux 0.line vty

68000C80: 3020340A 210A6E6F 20736368 6564756C 0 4.!.no schedul

68000C90: 65722061 6C6C6F63 6174650A 656E640A er allocate.end.

68000CA0: FEDC0001 000004A8 8222159B 00000467 ~\.....(.".....g

68000CB0: 0A6B6572 6265726F 73207061 7373776F .kerberos passwo

68000CC0: 7264200A 63727970 746F2052 53412D6B rd .crypto RSA-k

68000CD0: 65792D70 61697220 4D41524B 674A6C42 ey-pair MARKgJlB

68000CE0: 444B6F77 624B2E64 6F6D6169 6E2E636F DKowbK.domain.co

68000CF0: 6D203020 31313433 35353239 34370A20 m 0 1143552947.

68000D00: 33303832 30313533 20303230 31303033 30820153 0201003

68000D10: 30203044 30363039 32412038 36343838 0 0D06092A 86488

68000D20: 36463720 30443031 30313031 20303530 6F7 0D010101 050

142 | CISCO1712 investigations

68000D30: 30303438 32203031 33443330 38322030 00482 013D3082 0

68000D40: 31333930 32303120 0A203030 30323431 1390201 . 000241

68000D50: 30302043 46393644 45363720 32394545 00 CF96DE67 29EE

68000D60: 43464533 20424233 32333037 44203736 CFE3 BB32307D 76

68000D70: 30363537 39462031 41413230 39413920 06579F 1AA209A9

68000D80: 44434146 33314538 20444137 45434235 DCAF31E8 DA7ECB5

68000D90: 31200A20 30324644 38333732 20373933 1 . 02FD8372 793

68000DA0: 30343837 41203631 41314244 34302044 0487A 61A1BD40 D

68000DB0: 41394636 35303920 41443131 46414446 A9F6509 AD11FADF

68000DC0: 20373442 44454330 46203930 34353830 74BDEC0F 904580

68000DD0: 42312044 32394533 35324420 0A203137 B1 D29E352D . 17

68000DE0: 33373339 33312030 32303330 31303020 373931 02030100

68000DF0: 30313032 34303736 20304233 31384546 01024076 0B318EF

68000E00: 32203645 36353732 46372035 38463345 2 6E6572F7 58F3E

68000E10: 46463320 46343639 35313035 20323130 FF3 F4695105 210

68000E20: 44363342 35200A20 32353345 42393444 D63B5 . 253EB94D

68000E30: 20424446 41333941 37204643 41373038 BDFA39A7 FCA708

68000E40: 41322046 33343236 31383120 34424545 A2 F3426181 4BEE

68000E50: 44334346 20424230 44374544 42203336 D3CF BB0D7EDB 36

68000E60: 44353137 32392041 44393544 33464220 D51729 AD95D3FB

68000E70: 0A203933 35453334 35422031 32424242 . 935E345B 12BBB

68000E80: 33333920 33454435 36443032 20323130 339 3ED56D02 210

68000E90: 30464443 39204333 45343643 44382036 0FDC9 C3E46CD8 6

68000EA0: 37333334 36344520 35453546 33424430 733464E 5E5F3BD0

68000EB0: 20303241 30453936 31200A20 43393034 02A0E961 . C904

68000EC0: 41464636 20393834 44324330 44203638 AFF6 984D2C0D 68

68000ED0: 39334542 46382030 45364630 32323120 93EBF8 0E6F0221

68000EE0: 30304431 36363037 20323536 45374539 00D16607 256E7E9

68000EF0: 43203442 33433142 41462031 41353335 C 4B3C1BAF 1A535

68000F00: 32424520 0A203138 36363835 37352039 2BE . 18668575 9

68000F10: 42414641 38333720 42414141 41453034 BAFA837 BAAAAE04

68000F20: 20314641 31343330 32203546 30323230 1FA14302 5F0220

68000F30: 31302034 35413138 33433120 44454436 10 45A183C1 DED6

68000F40: 32463139 20373045 38453831 45200A20 2F19 70E8E81E .

68000F50: 34334136 30373746 20324633 46444534 43A6077F 2F3FDE4

68000F60: 37203131 46453844 45342032 37324645 7 11FE8DE4 272FE

68000F70: 46354320 30464439 38443032 20323032 F5C 0FD98D02 202

68000F80: 35344245 46204546 45394442 36312034 54BEF EFE9DB61 4

68000F90: 39343133 45383920 0A203134 42453443 9413E89 . 14BE4C

68000FA0: 39392039 31344430 39364520 36363339 99 914D096E 6639

68000FB0: 38363533 20434543 41433143 44204638 8653 CECAC1CD F8

68000FC0: 33383437 46302032 46303232 30304620 3847F0 2F02200F

68000FD0: 30393235 32323235 20384334 44303431 09252225 8C4D041

68000FE0: 41200A20 37373532 41353930 20434145 A . 7752A590 CAE

68000FF0: 34443236 43203630 42384438 36342037 4D26C 60B8D864 7

68001000: 41413131 30343120 33413237 43304241 AA11041 3A27C0BA

68001010: 20464646 3233330A 20717569 740A2033 FFF233. quit. 3

68001020: 30354333 30304420 30363039 32413836 05C300D 06092A86

68001030: 20343838 36463730 44203031 30313031 4886F70D 010101

68001040: 30352030 30303334 42303020 33303438 05 00034B00 3048

68001050: 30323431 20303043 46393644 45203637 0241 00CF96DE 67

68001060: 32394545 4346200A 20453342 42333233 29EECF . E3BB323

68001070: 30203744 37363036 35372039 46314141 0 7D760657 9F1AA

CISCO1712 investigations | 143

68001080: 32303920 41394443 41463331 20453844 209 A9DCAF31 E8D

68001090: 41374543 42203531 30324644 38332037 A7ECB 5102FD83 7

680010A0: 32373933 30343820 37413631 41314244 2793048 7A61A1BD

680010B0: 200A2034 30444139 46363520 30394144 . 40DA9F65 09AD

680010C0: 31314641 20444637 34424445 43203046 11FA DF74BDEC 0F

680010D0: 39303435 38302042 31443239 45333520 904580 B1D29E35

680010E0: 32443137 33373339 20333130 32303330 2D173739 3102030

680010F0: 31203030 30310A20 71756974 0A736E6D 1 0001. quit.snm

68001100: 702D7365 72766572 20686320 706F6C6C p-server hc poll

68001110: 20300A65 6E640A00 00000000 00000000 0.end..........

68001120: 00000000 00000000 00000000 00000000

68001130: 00000000 00000000 00000000 00000000

68001140: 00000000 00000000 00000000 00000000

68001150: 00000000 00000000 00000000 00000000

68001160: 00000000 00000000 00000000 00000000

68001170: 00000000 00000000 00000000 00000000

68001180: 00000000 00000000 00000000 00000000

68001190: 00000000 00000000 00000000 00000000

680011A0: 00000000 00000000 00000000 00000000

680011B0: 00000000 00000000 00000000 00000000

680011C0: 00000000 00000000 00000000 00000000

680011D0: 00000000 00000000 00000000 00000000

680011E0: 00000000 00000000 00000000 00000000

680011F0: 00000000 00000000 00000000 00000000

68001200: 00000000 00000000 00000000 00000000

<SNIP>

Appendix D | 145

Appendix D. ProCurve Switch 2626 investigation

Output listing 6-8: ProCurve Switch 2626 Bench jumper mode commands
tty=noneProCurve Switch 2626=>

 logout Terminate this console/telnet session.

 DEBUGIO Redirects output from all printf()'s to the screen

 FORCE_REDRAW Forces the redraw of field labels in config screens

 LABprototype Change LAB Prototype status

 UPTIMESHOW Shows time the switch has been up

 DATAProtshow Show information on all dataProt semaphores

 MSGPoolshow Dumps the MSG pool

 PKTPoolshow Dumps the PKT pool

 BUFSHOW Dumps a MSG or PKT buffer

 PKTpoolStatsShow Show the PKT pool allocation statistics

 MSGpoolStatsShow Show the MSG pool allocation statistics

 PKTPoolDatashow Dumps the PKT pool data

 PKTpoolcrashifless Crash if pkt pool goes below this

 CRASHData Show crash information

 CRASHLogfileshow Show all recorded crash records

 CRASHLOGTest Crash Log Test: crashLogTest -[b][i][I][s][f][a][o][u]b

 = Bus/Address Error, i = Infinite loop with tasks

 locked, I = HW watchdog resets = task Infinite loop, f

 = FATAL, a = ASSERTo = operation fault (illegal inst.)

 u = unaligned instr

 CRASHLOGClear Clear Crash Log: crashLogClear

 EVENTLogfileshow Show contents of the event log file

 LLshow Detailed directory listing: llShow <filesystem (eg.

 LSshow Directory listing: lsShow <filesystem (eg.

 FS File system commands

 SInfo Information on registered Servers

 CSConninfo Information on registered Client-Server connections

 MEM_Rpt Show memory usage info: mem_rpt [-d]

 MEM_Chk Check memory allocation data structures

 MEM_Chk_Add Turns on memory checking at task switch: mem_chk_add

 [-f]

 MEM_Chk_Rem Turns off memory checking

 I Task Info

 CHECKSTACK checkStack()

 SEMSHOW semShow(semid) - semaphore show

 TASKSUSPEND taskSuspend (taskId) - suspend a task

 TASKRESUME taskResume (taskId) - resume a suspended task

 SEMAllshow Show information on all switch semaphores

 EXCeption-ignore Manage the exception list

 DMACOUNTERSshow Show DMA Driver counters

 DMACLEARcounters ClearDMA Driver counters

 VERsion Display firmware version stamp

 ROMVERsion Display ROM Version

 SETTERM set the terminal to vt100 or ASCII

 BOOTCOUNTER Number of times this switch has been powered up.

 UPLINK Select and configure the uplinks

146 | ProCurve Switch 2626 investigation

 HReset Hard Reset of the Switch

 STREBOOT Reboot to Benchmode

 GETOS GETOS <ipaddr> <remote-file>

 UPDMAC Update the MAC address (AABBCC-DDEEFF) :

 UPDMACNUM Update the number of MAC addresses

 Read Read memory: r [MOPT] <ADDR>

 WR Write memory: w [MOPT] <ADDR> <VALUE>

 FILL Fill memory: fill [MOPT] <ADDR> <ADDR> <VALUE>

 UPDSN Update the Serial Number

 UPDMFG Update the specified manufacturing info

 CLRMFG Clear the specified manufacturing info

 LED Turn all possible LEDs [on|blink|off]

 SMode Set Memory Mode: sm [-l<READ_LENGTH> -b -h -w -a<bhw>

 -d<bhw> -n -i -c -s] Set default memory operation modes

 (MOPT).

 LIST List available tests matching <TSPEC>: list <TSPEC>

 TEST Execute tests matching <TSPEC>, <NUM> times: test

 <TSPEC> <NUM>

 ST_mode Set the Selftest mode: st_mode <mfg|norm|spec>

 IGNore Set Selftest to ignore failures

 STOP Set Selftest to stop on failure

 ST_DIsplay Set Selftest reporting verbosity: st_display

 <none|low|med|hi>

 VIEW View the Selftest test ring: view [-s -d -i] <count>

 ARLTEST Runs Arl Test on the Asic(s): arltest

 ST_JUMP_pc Resume product code initialization from benchmode

 LINKVALID Detect link: linkvalid <port> <timeout>

 TXRX Port pkt test: txrx <TX port> <RX port> <speed>

 <duplex> <mode> count>

 macloopback Usage: macloopback <TX port> <# of pkt>

 ST_LIST Display loopback tests for port: st_list <port>

 X_TYPE Display Transceiver Type for <slot port>

 BIST Run the BCM bist test on the chip

 MEMTEST Performs the Switching memory test: memtest <timeout>

 GBICINFO Retreives miniGBIC info : gbicinfo <port>

 GBICHOTSWAP Performs a hot-swap test on specified GBIC module:

 gbicHotswap <port> <timeout>

 GBICTXDISABLETEST Performs TX Disable test on specified port:

 gbicTxDisableTest <port>

 GBPTest Test memory interface to ASIC

 dType debug type set/clear

 PDSHOW Show various PowerDsine information

 PDPOWER Set PowerDsine Power Supply Value

 PDCAP Set PowerDsine Capacitor Detection

 PDDISCON Set PD33000 AC/DC Detection Mode

 POE_PORT Set user configurable port parameters.

 POE_STATUS_PORT Display port statistics and measurements.

 POE_DEBUG Change the POE Debug level.

 POE_READ_EPS Read from the specified EPS register.

 POE_WRITE_EPS Write to the specified EPS register.

 POE_SLOT_UP Enable a slot for POE functionality.

ProCurve Switch 2626 investigation | 147

 POE_START Enable POE Mgr polling.

 POE_STOP Disable POE Mgr polling.

 POE_EPS_TIMEOUT Enable/Disable EPS timeout.

 POE_EPS_COMM_INIT Send the reset/init sequence to the I2C micro.

 POE_PD_CHECK_ALIVE Test to see if the Tweety PD is alive.

 POE_PD_INIT Hard init the PD unit.

 POE_PD_FACTORY Restore the PD unit to factory defaults.

 POE_EPS_SIGNAL Simulate and EPS Int.

 POE_EPS_DEBUG Enable/Disable EPS debug timeout.

 CHASSISshow Show various chassis information

 S_CFG Display Cage: s_cfg

 WATCHDOG set watchdog parameters

 MEMWATCH set the wp

 CHIPVER Prints the Chip Versions

 RPSset Set a wanted RPS state

 I2CREAD Read from the specified PPC I2C device and register

 I2CWRITE Write to the specified PPC I2C device and register

 UPGRADE

 DOWNGRADE

 CONFIGTest Verify CLI generation/Xlate function

 P_BCNTRCLR Clear all counters for unit/port

 P_BCNTRCLRALL Clear all counters in context.

 DROPCOUNT Online diag to get stacklink drop counts.

 BCM Broadcom Debug: bcm <string for broadcom debugger>

 UNIT_INIT Recommended Usage: [slot <number(s)>] unit_init

 UNIT_UPDATE Recommended Usage: [slot <number(s)>] unit_update

 UNIT_LINK Checks link state of slot's ports

 boot Reboot the device.

 clear Clear table/statistics or authorized client public

 keys.

 configure Enter the Configuration context.

 copy Copy datafiles to/from the switch.

 debug Enable/disable debug logging.

 end Return to the Manager Exec context.

 erase Erase the configuration file stored in flash or the

 primary/secondary flash image.

 getMIB Retrieve and display the value of the MIB objects

 specified.

 kill Kill other active console, telnet, or ssh sessions.

 log Display log events.

 page Toggle paging mode.

 print Execute a command and redirect its output to the device

 channel for current session.

 redo Re-execute a command from history.

 reload Warm reboot of the switch.

 repeat Repeat execution of a previous command.

 setMIB Set the value of a MIB object.

 setup Enter the 'Switch Setup' screen for basic switch

 configuration.

 telnet Initiate an outbound telnet session to another network

148 | ProCurve Switch 2626 investigation

 device.

 terminal Set the dimensions of the terminal window.

 update Enter Monitor ROM Console.

 walkMIB Walk through all instances of the object specified

 displaying the MIB object names, instances and values.

 write View or save the running configuration of the switch.

 enable Enter the Manager Exec context.

 exit Return to the previous context or terminate current

 console/telnet session if you are in the Operator

 context level.

 link-test Test the connection to a MAC address on the LAN.

 logout Terminate this console/telnet session.

 menu Change console user interface to menu system.

 ping Send IP Ping requests to a device on the network.

 show Display switch operation information.

 traceroute Send traceroute to a device on the network.

tty=noneProCurve Switch 2626=>

ProCurve Switch 2626 investigation | 149

Output listing 6-9: ProCurve Switch 2626 File system investigation commands
ProCurve Switch 2626$ fs pnbfswalk

0x14f5178 cfg

0x14f4b38 running-config

0x14f4a70 startup-config

0x14f50b0 flash

0x14f4fe8 log

0x14f48e0 crash-data

0x14f4818 crash-log

0x14f49a8 event-log

0x14f4f20 os

0x14f4750 primary

0x14f4688 secondary

0x14f4e58 ramfs

0x14f4d90 ssh

0x14f4cc8 mgr_keys

0x14f45c0 authorized_keys

0x14f4c00 oper_keys

0x14f44f8 authorized_keys

ProCurve Switch 2626$ fs ls flash

Name Size Date

---------------- ------ -----------------

 .bootblock 1248 02/06/26 06:28:15

 mgrinfo.txt 96 01/01/90 00:00:21

 config.txt 6555 01/01/90 00:00:05

 iflags 50 01/01/90 00:00:14

 rbtcnt 4 01/01/90 00:00:05

fs nvfswalk

ProCurve Switch 2626$ fs nvfswalk

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

 ** 0x7cf20000 .bootblock 000004e0 ffffffff ffff

 0x7cf20500 rbtcnt 00000004 00000002 ffff

 0x7cf20530 rbtcnt 00000004 00000002 ffff

 0x7cf20560 iflags 00000032 00000006 ffff

 0x7cf205c0 rbtcnt 00000004 00000002 ffff

 0x7cf205f0 iflags 00000032 00000006 ffff

 0x7cf20650 rbtcnt 00000004 0000000c ffff

 0x7cf20680 iflags 00000032 0000001f ffff

 0x7cf206e0 rbtcnt 00000004 00000002 ffff

 0x7cf20710 iflags 00000032 00000006 ffff

 0x7cf20770 rbtcnt 00000004 00000002 ffff

 0x7cf207a0 iflags 00000032 00000006 ffff

 0x7cf20800 rbtcnt 00000004 00000002 ffff

 0x7cf20830 iflags 00000032 00000006 ffff

 0x7cf20890 rbtcnt 00000004 00000002 ffff

 0x7cf208c0 iflags 00000032 00000006 ffff

 0x7cf20920 rbtcnt 00000004 00000002 ffff

 0x7cf20950 iflags 00000032 00000006 ffff

150 | ProCurve Switch 2626 investigation

 0x7cf209b0 rbtcnt 00000004 00000002 ffff

 0x7cf209e0 iflags 00000032 00000006 ffff

 0x7cf20a40 rbtcnt 00000004 00000002 ffff

 0x7cf20a70 iflags 00000032 00000006 ffff

 0x7cf20ad0 rbtcnt 00000004 00000002 ffff

 0x7cf20b00 iflags 00000032 00000006 ffff

 0x7cf20b60 rbtcnt 00000004 00000002 ffff

 0x7cf20b90 iflags 00000032 00000006 ffff

 0x7cf20bf0 rbtcnt 00000004 10000000 ffff

 0x7cf20c20 iflags 00000032 10000004 ffff

 0x7cf20c80 rbtcnt 00000004 00000002 ffff

 0x7cf20cb0 iflags 00000032 00000006 ffff

 0x7cf20d10 rbtcnt 00000004 00000002 ffff

 0x7cf20d40 iflags 00000032 00000006 ffff

 0x7cf20da0 rbtcnt 00000004 00000002 ffff

 0x7cf20dd0 iflags 00000032 00000006 ffff

 0x7cf20e30 rbtcnt 00000004 00000002 ffff

 0x7cf20e60 iflags 00000032 00000006 ffff

 0x7cf20ec0 rbtcnt 00000004 00000002 ffff

 0x7cf20ef0 iflags 00000032 00000006 ffff

 0x7cf20f50 rbtcnt 00000004 00000002 ffff

 0x7cf20f80 iflags 00000032 00000006 ffff

 0x7cf20fe0 rbtcnt 00000004 00000002 ffff

 0x7cf21010 iflags 00000032 00000006 ffff

 0x7cf21070 rbtcnt 00000004 00000002 ffff

 0x7cf210a0 iflags 00000032 00000006 ffff

 0x7cf21100 rbtcnt 00000004 00000002 ffff

 0x7cf21130 iflags 00000032 00000006 ffff

 0x7cf21190 rbtcnt 00000004 00000002 ffff

 0x7cf211c0 iflags 00000032 00000006 ffff

 0x7cf21220 rbtcnt 00000004 00000003 ffff

 0x7cf21250 iflags 00000032 0000000f ffff

 0x7cf212b0 rbtcnt 00000004 00000002 ffff

 0x7cf212e0 rbtcnt 00000004 00000002 ffff

 0x7cf21310 iflags 00000032 00000006 ffff

 0x7cf21370 delta 00002800 00000022 ffff

 0x7cf23b90 rbtcnt 00000004 00000002 ffff

 0x7cf23bc0 iflags 00000032 00000007 ffff

 0x7cf23c20 rbtcnt 00000004 00000003 ffff

 0x7cf23c50 iflags 00000032 00000010 ffff

 0x7cf23cb0 rbtcnt 00000004 00000003 ffff

 0x7cf23ce0 rbtcnt 00000004 00000003 ffff

 0x7cf23d10 rbtcnt 00000004 00000003 ffff

 0x7cf23d40 iflags 00000032 00000010 ffff

 0x7cf23da0 rbtcnt 00000004 00000003 ffff

 0x7cf23dd0 iflags 00000032 00000010 ffff

 0x7cf23e30 delta 00002800 00000090 ffff

 0x7cf26650 rbtcnt 00000004 00000003 ffff

 0x7cf26680 rbtcnt 00000004 00000003 ffff

 0x7cf266b0 rbtcnt 00000004 00000003 ffff

 0x7cf266e0 rbtcnt 00000004 00000003 ffff

 0x7cf26710 rbtcnt 00000004 00000003 ffff

 0x7cf26740 iflags 00000032 0000000a ffff

ProCurve Switch 2626 investigation | 151

 0x7cf267a0 rbtcnt 00000004 00000003 ffff

 0x7cf267d0 rbtcnt 00000004 00000003 ffff

 0x7cf26800 rbtcnt 00000004 00000003 ffff

 0x7cf26830 iflags 00000032 0000000a ffff

 0x7cf26890 delta 00002800 0000002b ffff

 0x7cf290b0 rbtcnt 00000004 00000003 ffff

 0x7cf290e0 iflags 00000032 0000000a ffff

 0x7cf29140 rbtcnt 00000004 00000003 ffff

 0x7cf29170 iflags 00000032 0000000a ffff

 0x7cf291d0 rbtcnt 00000004 00000003 ffff

 0x7cf29200 rbtcnt 00000004 00000003 ffff

 0x7cf29230 rbtcnt 00000004 00000003 ffff

 0x7cf29260 iflags 00000032 0000000a ffff

 0x7cf292c0 rbtcnt 00000004 00000003 ffff

 0x7cf292f0 iflags 00000032 0000000a ffff

 0x7cf29350 delta 00002800 0000004e ffff

 0x7cf2bb70 rbtcnt 00000004 00000003 ffff

 0x7cf2bba0 iflags 00000032 0000000a ffff

 0x7cf2bc00 rbtcnt 00000004 00000003 ffff

 0x7cf2bc30 rbtcnt 00000004 00000003 ffff

 0x7cf2bc60 rbtcnt 00000004 00000003 ffff

 0x7cf2bc90 iflags 00000032 0000000a ffff

 0x7cf2bcf0 delta 00002800 00000023 ffff

 0x7cf2e510 rbtcnt 00000004 00000003 ffff

 0x7cf2e540 iflags 00000032 0000000a ffff

 0x7cf2e5a0 rbtcnt 00000004 00000003 ffff

 0x7cf2e5d0 rbtcnt 00000004 00000003 ffff

 0x7cf2e600 rbtcnt 00000004 00000003 ffff

 0x7cf2e630 iflags 00000032 0000000a ffff

 0x7cf2e690 delta 00002800 00000036 ffff

 0x7cf30eb0 rbtcnt 00000004 00000003 ffff

 0x7cf30ee0 iflags 00000032 0000000a ffff

 0x7cf30f40 rbtcnt 00000004 00000003 ffff

 0x7cf30f70 rbtcnt 00000004 00000003 ffff

 0x7cf30fa0 rbtcnt 00000004 00000003 ffff

 0x7cf30fd0 iflags 00000032 0000000a ffff

 0x7cf31030 rbtcnt 00000004 00000003 ffff

 0x7cf31060 iflags 00000032 0000000a ffff

 0x7cf310c0 rbtcnt 00000004 00000003 ffff

 0x7cf310f0 iflags 00000032 0000000a ffff

 0x7cf31150 delta 00002800 00000079 ffff

 0x7cf33970 rbtcnt 00000004 00000003 ffff

 0x7cf339a0 iflags 00000032 0000000a ffff

 0x7cf33a00 rbtcnt 00000004 00000003 ffff

 0x7cf33a30 iflags 00000032 0000000a ffff

 0x7cf33a90 rbtcnt 00000004 00000003 ffff

 0x7cf33ac0 iflags 00000032 0000000a ffff

 0x7cf33b20 delta 00002800 00000156 ffff

 0x7cf36340 mgrinfo.txt 00000050 000001d6 ffff

 0x7cf363b0 rbtcnt 00000004 00000003 ffff

 0x7cf363e0 iflags 00000032 0000000a ffff

 0x7cf36440 rbtcnt 00000004 00000003 ffff

 0x7cf36470 iflags 00000032 0000000a ffff

152 | ProCurve Switch 2626 investigation

 0x7cf364d0 rbtcnt 00000004 00000003 ffff

 0x7cf36500 iflags 00000032 0000000a ffff

 0x7cf36560 mgrinfo.txt 00000050 00003267 ffff

 0x7cf365d0 rbtcnt 00000004 00000003 ffff

 0x7cf36600 iflags 00000032 0000000a ffff

 0x7cf36660 rbtcnt 00000004 00000003 ffff

 0x7cf36690 iflags 00000032 0000000a ffff

 0x7cf366f0 rbtcnt 00000004 00000003 ffff

 0x7cf36720 iflags 00000032 0000000a ffff

 0x7cf36780 rbtcnt 00000004 00000003 ffff

 0x7cf367b0 iflags 00000032 0000000a ffff

 0x7cf36810 rbtcnt 00000004 00000003 ffff

 0x7cf36840 iflags 00000032 0000000a ffff

 0x7cf368a0 rbtcnt 00000004 00000006 ffff

 0x7cf368d0 iflags 00000032 0000000d ffff

 0x7cf36930 delta 00002800 00000025 ffff

 0x7cf39150 mgrinfo.txt 00000050 0001828c ffff

 0x7cf391c0 rbtcnt 00000004 00000005 ffff

 0x7cf391f0 config.txt 00001d39 00000006 ffff

 0x7cf3af50 delta 00002800 00000082 ffff

 0x7cf3d770 rbtcnt 00000004 00000005 ffff

 0x7cf3d7a0 rbtcnt 00000004 00000005 ffff

 0x7cf3d7d0 rbtcnt 00000004 00000005 ffff

 0x7cf3d800 mgrinfo.txt 00000060 003395f2 ffff

 0x7cf3d880 rbtcnt 00000004 00000005 ffff

 0x7cf3d8b0 mgrinfo.txt 00000060 0088c9ff ffff

 0x7cf3d930 mgrinfo.txt 00000060 0088ca00 ffff

 0x7cf3d9b0 mgrinfo.txt 00000060 0088ca00 ffff

 0x7cf3da30 mgrinfo.txt 00000060 0088ca01 ffff

 0x7cf3dab0 mgrinfo.txt 00000060 0088ca17 ffff

 0x7cf3db30 mgrinfo.txt 00000060 0088ca18 ffff

 0x7cf3dbb0 mgrinfo.txt 00000060 0088ca1e ffff

 0x7cf3dc30 mgrinfo.txt 00000060 0088ca1e ffff

 0x7cf3dcb0 mgrinfo.txt 00000060 0088ca80 ffff

 0x7cf3dd30 rbtcnt 00000004 00000005 ffff

 0x7cf3dd60 rbtcnt 00000004 01419e18 ffff

 0x7cf3dd90 rbtcnt 00000004 00000005 ffff

 0x7cf3ddc0 rbtcnt 00000004 01f87e7b ffff

 0x7cf3ddf0 rbtcnt 00000004 00000005 ffff

 0x7cf3de20 rbtcnt 00000004 00000005 ffff

 0x7cf3de50 rbtcnt 00000004 00000005 ffff

 0x7cf3de80 rbtcnt 00000004 00000005 ffff

 0x7cf3deb0 rbtcnt 00000004 00000005 ffff

 0x7cf3dee0 rbtcnt 00000004 00000005 ffff

 0x7cf3df10 rbtcnt 00000004 00000005 ffff

 0x7cf3df40 rbtcnt 00000004 00000005 ffff

 0x7cf3df70 rbtcnt 00000004 00000005 ffff

 0x7cf3dfa0 rbtcnt 00000004 00000005 ffff

 0x7cf3dfd0 rbtcnt 00000004 00000005 ffff

 0x7cf3e000 rbtcnt 00000004 00000005 ffff

 ** 0x7cf3e030 mgrinfo.txt 00000060 00000015 ffff

 0x7cf3e0b0 rbtcnt 00000004 00000005 ffff

 0x7cf3e0e0 delta 00002800 00000005 ffff

ProCurve Switch 2626 investigation | 153

 ** 0x7cf40900 config.txt 0000199b 00000005 ffff

 ** 0x7cf422c0 iflags 00000032 0000000e ffff

 ** 0x7cf42320 rbtcnt 00000004 00000005 ffff

ProCurve Switch 2626$ fs ramfswalk

ramFAT | open files : 0

 | total files : 7

 | total blocks : 99

 | total memory : 319472

 filename file open ct type size date blk C linklist

---------------- ---- ---- -- ---- ------- -------- ---- - ----------

 . 4000 0000 0 VOLM 0 00000003 0 - 0x8aadc4

 crash.log 0001 0000 0 CLog 5680 00000003 1 + 0x1ff2258

 event.log 0001 0000 0 Evnt 161188 00000003 1 + 0x1fcaca8

 crash.dat 0004 0000 0 CDat 25 00000003 1 + 0x1ff3894

 config.upd 0004 0001 0 Allc 6555 00000005 7 - 0x18ebe70

 config.cfg 0004 0001 0 Allc 6555 00000005 7 - 0x18ea1a0

 moduli 0004 0002 0 Allc 83922 0000000e 82 - 0x18485f8

Appendix E | 155

Appendix E. ProCurve Switch 2824 investigation

Output listing 6-10: Procurve 2824 marker search after factory reset, in Bench mode
ty=noneProCurve Switch 2824=> sm -b -i

 access:b, display:b, read_length:256, inc addr after read

tty=noneProCurve Switch 2824=> fs nvfswalk

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

 ** 0xfff20000 .bootblock 000004e0 ffffffff ffff

 0xfff20500 rbtcnt 00000004 0000000a ffff

 0xfff20530 iflags 00000032 0000000a ffff

 0xfff20590 rbtcnt 00000004 0000000a ffff

 0xfff205c0 rbtcnt 00000004 0000000a ffff

 0xfff205f0 rbtcnt 00000004 0000000a ffff

 0xfff20620 iflags 00000032 0000000a ffff

 0xfff20680 rbtcnt 00000004 0000000a ffff

 0xfff206b0 rbtcnt 00000004 0000000a ffff

 0xfff206e0 delta 00002800 0000005a ffff

 0xfff22f00 mgrinfo.txt 00000060 0000005a ffff

 0xfff22f80 config.txt 000019c1 0000006f ffff

 0xfff24970 delta 00002800 0000006f ffff

 0xfff27190 mgrinfo.txt 00000060 000000d3 ffff

 0xfff27210 mgrinfo.txt 00000060 000000e3 ffff

 0xfff27290 rbtcnt 00000004 00000119 ffff

 0xfff272c0 mgrinfo.txt 00000060 00000217 ffff

 0xfff27340 rbtcnt 00000004 0000000a ffff

 0xfff27370 rbtcnt 00000004 0000000a ffff

 0xfff273a0 rbtcnt 00000004 0000000a ffff

 0xfff273d0 config.txt 00002623 21479a96 ffff

 0xfff29a20 delta 00002800 21479aa1 ffff

 0xfff2c240 mgrinfo.txt 00000060 231d2954 ffff

 0xfff2c2c0 rbtcnt 00000004 0000000a ffff

 0xfff2c2f0 rbtcnt 00000004 00000009 ffff

 0xfff2c320 rbtcnt 00000004 0000000c ffff

 0xfff2c350 rbtcnt 00000004 00000009 ffff

 0xfff2c380 rbtcnt 00000004 00000009 ffff

 0xfff2c3b0 mgrinfo.txt 00000060 00000009 ffff

 0xfff2c430 mgrinfo.txt 00000060 00000009 ffff

 0xfff2c4b0 rbtcnt 00000004 00000009 ffff

 0xfff2c4e0 iflags 00000032 00000009 ffff

 0xfff2c540 rbtcnt 00000004 00000009 ffff

 0xfff2c570 rbtcnt 00000004 00008ca2 ffff

 0xfff2c5a0 delta 00002800 00008ca2 ffff

 0xfff2edc0 config.txt 00001950 00008ca2 ffff

 0xfff30730 delta 00002800 00008ca8 ffff

 0xfff32f50 rbtcnt 00000004 0000000c ffff

 0xfff32f80 rbtcnt 00000004 00000009 ffff

 0xfff32fb0 rbtcnt 00000004 00000009 ffff

 0xfff32fe0 rbtcnt 00000004 00000009 ffff

 0xfff33010 host_ssh1 000001d4 00000066 ffff

156 | ProCurve Switch 2824 investigation

 0xfff33210 rbtcnt 00000004 00000009 ffff

 0xfff33240 delta 00002800 00000009 ffff

 0xfff35a60 config.txt 00001950 00000009 ffff

 0xfff373d0 iflags 00000032 0000001b ffff

 0xfff37430 delta 00002800 0000001d ffff

 0xfff39c50 mgrinfo.txt 00000060 00000046 ffff

 ** 0xfff39cd0 host_ssh1 000001d4 0000004d ffff

 0xfff39ed0 rbtcnt 00000004 00000009 ffff

 0xfff39f00 mgrinfo.txt 00000060 00000009 ffff

 ** 0xfff39f80 mgrinfo.txt 00000060 00000009 ffff

 0xfff3a000 delta 00002800 00000009 ffff

 0xfff3c820 config.txt 00001950 00000009 ffff

 0xfff3e190 delta 00002800 0000001d ffff

 0xfff409b0 rbtcnt 00000004 00000009 ffff

 0xfff409e0 rbtcnt 00000004 00000009 ffff

 0xfff40a10 rbtcnt 00000004 00000009 ffff

 0xfff40a40 delta 00002800 00000009 ffff

 ** 0xfff43260 config.txt 00001950 00000009 ffff

 ** 0xfff44bd0 iflags 00000032 0000001a ffff

 ** 0xfff44c30 delta 00002800 0000001d ffff

 ** 0xfff47450 rbtcnt 00000004 00000009 ffff

tty=noneProCurve Switch 2824=> read 0xfff37430

fff37430 64 65 6c 74 61 00 ff ff ff ff ff ff ff ff ff ff delta...........

fff37440 00 00 28 00 00 00 00 1d ff f3 9c 50 00 00 ff ff ..(........P....

fff37450 00 01 e1 00 01 0a 00 01 e1 00 0d 53 4e 4d 50 4e SNMPN

fff37460 4f 54 49 46 59 20 28 0a 00 01 e1 00 0d 52 4f 57 OTIFY (......ROW

fff37470 5f 53 54 41 54 55 53 3d 31 0a 00 01 e1 00 12 4e _STATUS=1......N

fff37480 41 4d 45 3d 7e 73 74 61 63 6b 74 72 61 70 73 7e AME=~stacktraps~

fff37490 0a 00 01 e1 00 0e 54 41 47 3d 73 74 61 63 6b 74 TAG=stackt

fff374a0 72 61 70 0a 00 01 e1 00 0e 53 54 4f 52 41 47 45 rap......STORAGE

fff374b0 54 59 50 45 3d 35 0a 00 01 e3 00 12 53 4e 4d 50 TYPE=5......SNMP

fff374c0 56 33 43 4f 4d 4d 55 4e 49 54 59 20 28 0a 00 01 V3COMMUNITY (...

fff374d0 e3 00 0d 52 4f 57 5f 53 54 41 54 55 53 3d 31 0a ...ROW_STATUS=1.

fff374e0 00 01 e3 00 09 4e 41 4d 45 3d 7e 31 7e 0a 00 01 NAME=~1~...

fff374f0 e3 00 13 43 4f 4d 4d 5f 4e 41 4d 45 3d 7e 70 75 ...COMM_NAME=~pu

fff37500 62 6c 69 63 7e 0a 00 01 e3 00 25 53 45 43 5f 4e blic~.....%SEC_N

fff37510 41 4d 45 3d 7e 43 6f 6d 6d 75 6e 69 74 79 4d 61 AME=~CommunityMa

fff37520 6e 61 67 65 72 52 65 61 64 57 72 69 74 65 7e 0a nagerReadWrite~.

tty=noneProCurve Switch 2824=> read

fff37530 00 01 e3 00 0e 53 54 4f 52 41 47 45 54 59 50 45 STORAGETYPE

fff37540 3d 32 0a 00 01 e3 00 02 29 0a 00 01 e3 00 02 29 =2......)......)

fff37550 0a 00 01 e3 00 01 0a 00 03 2c 00 0d 44 48 43 50 ,..DHCP

fff37560 53 4e 4f 4f 50 72 20 28 0a 00 03 2c 00 0d 52 4f SNOOPr (...,..RO

fff37570 57 5f 53 54 41 54 55 53 3d 33 0a 00 03 2c 00 02 W_STATUS=3...,..

fff37580 29 0a 00 03 2c 00 01 0a fe 02 00 04 00 16 4e 41)...,.........NA

fff37590 4d 45 3d 7e 4d 41 52 4b 74 42 48 71 77 77 45 71 ME=~MARKtBHqwwEq
fff375a0 70 43 7e 0a 00 01 f0 00 01 0a 00 01 f0 00 12 53 pC~............S

fff375b0 4e 4d 50 56 33 43 4f 4d 4d 55 4e 49 54 59 20 28 NMPV3COMMUNITY (

fff375c0 0a 00 01 f0 00 0d 52 4f 57 5f 53 54 41 54 55 53 ROW_STATUS

fff375d0 3d 31 0a 00 01 f0 00 09 4e 41 4d 45 3d 7e 32 7e =1......NAME=~2~

ProCurve Switch 2824 investigation | 157

fff375e0 0a 00 01 f0 00 1b 43 4f 4d 4d 5f 4e 41 4d 45 3d COMM_NAME=

fff375f0 7e 4d 41 52 4b 77 42 45 4b 6f 77 62 4b 52 42 7e ~MARKwBEKowbKRB~

fff37600 0a 00 01 f0 00 25 53 45 43 5f 4e 41 4d 45 3d 7e %SEC_NAME=~

fff37610 43 6f 6d 6d 75 6e 69 74 79 4f 70 65 72 61 74 6f CommunityOperato

fff37620 72 52 65 61 64 4f 6e 6c 79 7e 0a 00 01 f0 00 0e rReadOnly~......

tty=noneProCurve Switch 2824=> read

fff37630 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 01 STORAGETYPE=2...

fff37640 f0 00 02 29 0a 00 01 f8 00 08 53 4e 4d 50 53 20 ...)......SNMPS

fff37650 28 0a 00 01 f8 00 0d 52 4f 57 5f 53 54 41 54 55 (......ROW_STATU

fff37660 53 3d 31 0a 00 01 f8 00 09 43 4f 4d 5f 49 44 3d S=1......COM_ID=

fff37670 32 0a 00 01 f8 00 16 4e 41 4d 45 3d 7e 4d 41 52 2......NAME=~MAR
fff37680 4b 77 42 45 4b 6f 77 62 4b 52 42 7e 0a 00 01 f8 KwBEKowbKRB~....

fff37690 00 07 56 49 45 57 3d 33 0a 00 01 f8 00 02 29 0a ..VIEW=3......).

fff376a0 00 01 f8 00 01 0a fe ff ff ff ff ff ff ff ff ff

fff376b0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff376c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff376d0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff376e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff376f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff37700 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff37710 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

fff37720 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

tty=noneProCurve Switch 2824=> read 0xfff39c50

fff39c50 6d 67 72 69 6e 66 6f 2e 74 78 74 00 ff ff ff ff mgrinfo.txt.....

fff39c60 00 00 00 60 00 00 00 46 ff f3 9c d0 00 00 ff ff ...`...F........

fff39c70 00 00 00 01 46 4c 47 00 4d 41 52 4b 63 47 73 58 FLG.MARKcGsX
fff39c80 41 47 56 63 49 47 00 00 00 00 00 00 00 00 00 00 AGVcIG..........

fff39c90 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff fb

fff39ca0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

fff39cb0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

fff39cc0 00 00 00 00 00 00 00 00 00 00 00 02 06 00 00 00

fff39cd0 68 6f 73 74 5f 73 73 68 31 00 ff ff ff ff ff ff host_ssh1.......

fff39ce0 00 00 01 d4 00 00 00 4d ff f3 9e d0 00 ff ff ff M........

fff39cf0 53 53 48 20 50 52 49 56 41 54 45 20 4b 45 59 20 SSH PRIVATE KEY

fff39d00 46 49 4c 45 20 46 4f 52 4d 41 54 20 31 2e 31 0a FILE FORMAT 1.1.

fff39d10 00 00 00 00 00 00 00 00 03 80 03 80 db a1 4a 7f J

fff39d20 76 28 ab 0e 05 c0 3f 69 d8 a0 57 a0 f4 21 99 e5 v(....?i..W..!..

fff39d30 63 86 1f 8e 65 41 bb 9a e2 c1 38 59 be 5c cd 60 c...eA....8Y.\.`

fff39d40 bd 31 5f 61 73 ea 62 6a 23 85 bc 98 c0 9a 61 ed .1_as.bj#.....a.

tty=noneProCurve Switch 2824=> read 0xfff39cd0

fff39cd0 68 6f 73 74 5f 73 73 68 31 00 ff ff ff ff ff ff host_ssh1.......

fff39ce0 00 00 01 d4 00 00 00 4d ff f3 9e d0 00 ff ff ff M........

fff39cf0 53 53 48 20 50 52 49 56 41 54 45 20 4b 45 59 20 SSH PRIVATE KEY
fff39d00 46 49 4c 45 20 46 4f 52 4d 41 54 20 31 2e 31 0a FILE FORMAT 1.1.

fff39d10 00 00 00 00 00 00 00 00 03 80 03 80 db a1 4a 7f J

fff39d20 76 28 ab 0e 05 c0 3f 69 d8 a0 57 a0 f4 21 99 e5 v(....?i..W..!..

fff39d30 63 86 1f 8e 65 41 bb 9a e2 c1 38 59 be 5c cd 60 c...eA....8Y.\.`

fff39d40 bd 31 5f 61 73 ea 62 6a 23 85 bc 98 c0 9a 61 ed .1_as.bj#.....a.

fff39d50 43 05 7c b8 d0 e8 7e 47 31 45 ce 46 25 4f 39 d3 C.|...~G1E.F%O9.

fff39d60 80 b7 30 e3 de 34 1c cd 77 6b 56 06 a0 d5 ba cd ..0..4..wkV.....

158 | ProCurve Switch 2824 investigation

fff39d70 72 09 dd 8e 38 7b 3e 98 68 db f9 88 da cb 20 a1 r...8{>.h..... .

fff39d80 74 0c 0a 0b 10 61 95 d6 15 6e 71 61 00 06 23 00 t....a...nqa..#.

fff39d90 00 00 09 68 6f 73 74 5f 73 73 68 31 59 57 59 57 ...host_ssh1YWYW

fff39da0 03 7d 19 19 bf 5f 06 30 88 93 e3 66 6d a5 b2 5b .}..._.0...fm..[

fff39db0 77 ba 9f 8e cf c2 71 c6 2f 7d fc f1 91 c8 8e f1 w.....q./}......

fff39dc0 82 c8 6d 86 f2 e6 7c 05 a4 80 2a 81 2f d1 9d a8 ..m...|...*./...

tty=noneProCurve Switch 2824=> read

fff39dd0 e2 5a 99 ab 3e 64 42 2c 83 48 1c 0c a4 66 ac 06 .Z..>dB,.H...f..

fff39de0 9c 90 24 ab ba d3 5b 2c ff 88 02 ff 2b 1f 45 25 ..$...[,....+.E%

fff39df0 13 da ba e1 7e eb 8e 8c 66 c2 4d 4f 48 e2 12 80 ~...f.MOH...

fff39e00 50 c6 82 d7 56 5f 4d 11 c6 c1 de d7 c0 c8 2a 57 P...V_M.......*W

fff39e10 7c fb 01 bf 4c 1d 61 af 21 9e f1 0a 9d ea f8 43 |...L.a.!......C

fff39e20 a5 fa 6f 13 5a b7 d4 35 01 27 89 53 06 2e 5b 03 ..o.Z..5.'.S..[.

fff39e30 bc 91 e7 ba 51 3d 6a 81 f0 d8 09 61 0d be db 81 Q=j....a....

fff39e40 dd db 3f 7b ea 58 10 8e e0 10 7c ee 01 c0 dc 96 ..?{.X....|.....

fff39e50 d6 06 0f a6 62 c9 ef a7 55 71 0e 10 8b 5d 58 7e b...Uq...]X~

fff39e60 64 cf bd f1 6e 5d df 31 e1 40 d4 93 8b db 53 67 d...n].1.@....Sg

fff39e70 28 df 1c 20 80 ab 26 6c 09 32 a7 6c 93 c0 62 69 (.. ..&l.2.l..bi

fff39e80 b9 3e e7 45 25 c3 01 c0 fe e3 09 be c0 65 91 8e .>.E%........e..

fff39e90 f4 c9 41 a9 14 dc e9 a0 6b 7c fe ac 1c 75 79 ee ..A.....k|...uy.

fff39ea0 de 6e c2 ff 7e 29 ce 8e c0 9e 57 ff 2a d8 b6 14 .n..~)....W.*...

fff39eb0 bb 82 e3 ac ea 43 eb 2a 50 18 05 bf bb ab c6 0b C.*P.......

fff39ec0 00 00 00 00 ff ff ff ff ff ff ff ff ff ff ff ff

Appendix F | 159

Appendix F. ProCurve Switch 2610-48 investigation

Output listing 6-11: Procurve 2610-48 (J9088A), nvfsdir, nvfserase and nvfsdfill command playaround
ProCurve Switch 2610-48# edomtset

ProCurve Switch 2610-48# edomtset

ProCurve Switch 2610-48$ nvfsdir

 filename | size | date | writeInProg | active | nextEntry

 .bootblock | 1248 | -1 | x00 | xff | xbcee0500

 rbtcnt | 4 | 8 | x00 | x00 | xbcee0530

 config00.cfg | 18 | 8 | x00 | xff | xbcee0570

 config00.dlt | 13 | 8 | x00 | xff | xbcee05a0

 config01.cfg | 0 | 8 | x00 | x00 | xbcee05c0

 index.cfg | 256 | 8 | x00 | xff | xbcee06e0

 config01.dlt | 10240 | 8 | x00 | x00 | xbcee2f00

 config01.cfg | 7842 | 8 | x00 | xff | xbcee4dd0

 rbtcnt | 4 | 8 | x00 | x00 | xbcee4e00

 rbtcnt | 4 | 8 | x00 | x00 | xbcee4e30

 rbtcnt | 4 | 8 | x00 | x00 | xbcee4e60

 iflags | 52 | 27 | x00 | xff | xbcee4ec0

 host_ssh2 | 1675 | 0 | x00 | xff | xbcee5570

 host_ssh2.pub | 380 | 0 | x00 | xff | xbcee5710

 config01.dlt | 10240 | 62 | x00 | xff | xbcee7f30

 rbtcnt | 4 | 8 | x00 | xff | xffffffff

diskSize=x100000, freeSize=xfa980, freeSizeWOCompaction=xf8080

ProCurve Switch 2610-48$ fs nvfswal

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

 ** 0xbcee0000 .bootblock 000004e0 ffffffff ffff

 0xbcee0500 rbtcnt 00000004 00000008 ffff

 ** 0xbcee0530 config00.cfg 00000012 00000008 fffe

 ** 0xbcee0570 config00.dlt 0000000d 00000008 fffe

 0xbcee05a0 config01.cfg 00000000 00000008 ffff

 ** 0xbcee05c0 index.cfg 00000100 00000008 ffff

 0xbcee06e0 config01.dlt 00002800 00000008 ffff

 ** 0xbcee2f00 config01.cfg 00001ea2 00000008 ffff

 0xbcee4dd0 rbtcnt 00000004 00000008 ffff

 0xbcee4e00 rbtcnt 00000004 00000008 ffff

 0xbcee4e30 rbtcnt 00000004 00000008 ffff

 ** 0xbcee4e60 iflags 00000034 0000001b ffff

 ** 0xbcee4ec0 host_ssh2 0000068b 00000000 ffff

 ** 0xbcee5570 host_ssh2.pub 0000017c 00000000 ffff

 ** 0xbcee5710 config01.dlt 00002800 0000003e ffff

 ** 0xbcee7f30 rbtcnt 00000004 00000008 ffff

ProCurve Switch 2610-48$ read 0xbcee5710

bcee5710 636f6e66 69673031 2e646c74 00ffffff

bcee5720 00002800 0000003e bcee7f30 00ffffff

bcee5730 00028900 010a0002 89000d53 4e4d504e

bcee5740 4f544946 5920280a 00028900 0d524f57

bcee5750 5f535441 5455533d 310a0002 8900124e

bcee5760 414d453d 7e737461 636b7472 6170737e

bcee5770 0a000289 000e5441 473d7374 61636b74

160 | ProCurve Switch 2610-48 investigation

bcee5780 7261700a 00028900 0e53544f 52414745

bcee5790 54595045 3d350a00 028b0012 534e4d50

bcee57a0 5633434f 4d4d554e 49545920 280a0002

bcee57b0 8b000d52 4f575f53 54415455 533d310a

bcee57c0 00028b00 094e414d 453d7e31 7e0a0002

bcee57d0 8b001343 4f4d4d5f 4e414d45 3d7e7075

bcee57e0 626c6963 7e0a0002 8b002553 45435f4e

bcee57f0 414d453d 7e436f6d 6d756e69 74794d61

bcee5800 6e616765 72526561 64577269 74657e0a

ProCurve Switch 2610-48$ sm

 access:w, display:w, read_length:256

ProCurve Switch 2610-48$ nvfserase

ProCurve Switch 2610-48$ read 0xbcee5710

bcee5710 ffffffff ffffffff ffffffff ffffffff

bcee5720 ffffffff ffffffff ffffffff ffffffff

bcee5730 ffffffff ffffffff ffffffff ffffffff

bcee5740 ffffffff ffffffff ffffffff ffffffff

bcee5750 ffffffff ffffffff ffffffff ffffffff

bcee5760 ffffffff ffffffff ffffffff ffffffff

bcee5770 ffffffff ffffffff ffffffff ffffffff

bcee5780 ffffffff ffffffff ffffffff ffffffff

bcee5790 ffffffff ffffffff ffffffff ffffffff

bcee57a0 ffffffff ffffffff ffffffff ffffffff

bcee57b0 ffffffff ffffffff ffffffff ffffffff

bcee57c0 ffffffff ffffffff ffffffff ffffffff

bcee57d0 ffffffff ffffffff ffffffff ffffffff

bcee57e0 ffffffff ffffffff ffffffff ffffffff

bcee57f0 ffffffff ffffffff ffffffff ffffffff

bcee5800 ffffffff ffffffff ffffffff ffffffff

ProCurve Switch 2610-48$ fs nv

 A addr filename size date flgs

 -- ---------- ---------------- -------- -------- ----

 ** 0xbcee0000 .bootblock 000004e0 ffffffff ffff

ProCurve Switch 2610-48$ nvfsdir

 filename | size | date | writeInProg | active | nextEntry

 .bootblock | 1248 | -1 | x00 | xff | xffffffff

diskSize=x100000, freeSize=xffae0, freeSizeWOCompaction=xffae0

ProCurve Switch 2610-48$ nvfsfill

Current diskSize=x100000, freeSize=xffae0, freeSizeWOCompaction=xffae0

opened file "fill000". size=1047264, status=1, fd=x85f55b50

wrote file. size=1047264, seed=0, status=5

closed file. closeStatus=1, llStatus=1

test failed at iteration 1

New diskSize=x100000, freeSize=x1d0, freeSizeWOCompaction=x1d0

ProCurve Switch 2610-48$ nvfsfill

Current diskSize=x100000, freeSize=x1d0, freeSizeWOCompaction=x1d0

opened file "fill000". size=464, status=1, fd=x85f55950

wrote file. size=464, seed=0, status=1

closed file. closeStatus=1, llStatus=1

re-opened file. status=1, fd=x85f55950

read file. status=1, bytesRead=464

closed file. closeStatus=1, llStatus=1

ProCurve Switch 2610-48 investigation | 161

test passed

New diskSize=x100000, freeSize=xff8f0, freeSizeWOCompaction=x0

ProCurve Switch 2610-48$ nvfsfill

Current diskSize=x100000, freeSize=xff8f0, freeSizeWOCompaction=x0

opened file "fill000". size=1046768, status=1, fd=x85f55b10

wrote file. size=1046768, seed=0, status=1

closed file. closeStatus=1, llStatus=1

re-opened file. status=1, fd=x85f55b10

read file. status=1, bytesRead=1046768

closed file. closeStatus=1, llStatus=1

test passed

New diskSize=x100000, freeSize=x1d0, freeSizeWOCompaction=x1d0

ProCurve Switch 2610-48$

ROM information:

 Build directory: /sw/rom/build/nemorom(ndx)

 Build date: Nov 28 2007

 Build time: 16:36:54

 Build version: R.10.06

 Build number: 14201

OS identifier found at @ 0xbc020000

Verifying Image validity ...

CRC on OS image header Passed

CRC on complete OS image file Passed

Valid OS image @ 0xbc020000

Decompressing...done.

CRC of image is 0xb8269f59

CRC @ 0x80001000 Len 10811056 is 0xb8269f59

initializing...initialization done.

162 | ProCurve Switch 2610-48 investigation

Output listing 6-12: Procurve 2610-48 (J9088A), marker inspection (using Sanitty) after HP_2626_BUTTON
procedure

<SNIP>

===

NODE INFO

Filename: config01.dlt

Address: 0xbcee5680

Is Active?: No

Next node address: 0xbcee7ea0

Date: 0x00 0x00 0x00 0x3f

Active flags: 0x00 0x00

Size [bytes]: 10240

Data, first 32bytes are header, next bytes are data:

bcee5680 63 6f 6e 66 69 67 30 31 2e 64 6c 74 00 ff ff ff config01.dlt....

bcee5690 00 00 28 00 00 00 00 3f bc ee 7e a0 00 00 ff ff ..(....?..~.....

bcee56a0 00 02 89 00 01 0a 00 02 89 00 0d 53 4e 4d 50 4e SNMPN

bcee56b0 4f 54 49 46 59 20 28 0a 00 02 89 00 0d 52 4f 57 OTIFY (......ROW

bcee56c0 5f 53 54 41 54 55 53 3d 31 0a 00 02 89 00 12 4e _STATUS=1......N

bcee56d0 41 4d 45 3d 7e 73 74 61 63 6b 74 72 61 70 73 7e AME=~stacktraps~

bcee56e0 0a 00 02 89 00 0e 54 41 47 3d 73 74 61 63 6b 74 TAG=stackt

bcee56f0 72 61 70 0a 00 02 89 00 0e 53 54 4f 52 41 47 45 rap......STORAGE

bcee5700 54 59 50 45 3d 35 0a 00 02 8b 00 12 53 4e 4d 50 TYPE=5......SNMP

bcee5710 56 33 43 4f 4d 4d 55 4e 49 54 59 20 28 0a 00 02 V3COMMUNITY (...

bcee5720 8b 00 0d 52 4f 57 5f 53 54 41 54 55 53 3d 31 0a ...ROW_STATUS=1.

bcee5730 00 02 8b 00 09 4e 41 4d 45 3d 7e 31 7e 0a 00 02 NAME=~1~...

bcee5740 8b 00 13 43 4f 4d 4d 5f 4e 41 4d 45 3d 7e 70 75 ...COMM_NAME=~pu

bcee5750 62 6c 69 63 7e 0a 00 02 8b 00 25 53 45 43 5f 4e blic~.....%SEC_N

bcee5760 41 4d 45 3d 7e 43 6f 6d 6d 75 6e 69 74 79 4d 61 AME=~CommunityMa

bcee5770 6e 61 67 65 72 52 65 61 64 57 72 69 74 65 7e 0a nagerReadWrite~.

bcee5780 00 02 8b 00 0e 53 54 4f 52 41 47 45 54 59 50 45 STORAGETYPE

bcee5790 3d 32 0a 00 02 8b 00 02 29 0a 00 02 8b 00 02 29 =2......)......)

bcee57a0 0a 00 02 8b 00 01 0a 00 03 da 00 0d 44 48 43 50 DHCP

bcee57b0 53 4e 4f 4f 50 72 20 28 0a 00 03 da 00 0d 52 4f SNOOPr (......RO

bcee57c0 57 5f 53 54 41 54 55 53 3d 33 0a 00 03 da 00 02 W_STATUS=3......

bcee57d0 29 0a 00 03 da 00 01 0a fe 02 00 04 00 16 4e 41).............NA

bcee57e0 4d 45 3d 7e 4d 41 52 4b 73 59 63 4b 70 79 66 66 ME=~MARKsYcKpyff

ProCurve Switch 2610-48 investigation | 163

bcee57f0 4e 79 7e 0a 00 02 98 00 01 0a 00 02 98 00 12 53 Ny~............S

bcee5800 4e 4d 50 56 33 43 4f 4d 4d 55 4e 49 54 59 20 28 NMPV3COMMUNITY (

bcee5810 0a 00 02 98 00 0d 52 4f 57 5f 53 54 41 54 55 53 ROW_STATUS

bcee5820 3d 31 0a 00 02 98 00 09 4e 41 4d 45 3d 7e 32 7e =1......NAME=~2~

bcee5830 0a 00 02 98 00 1b 43 4f 4d 4d 5f 4e 41 4d 45 3d COMM_NAME=

bcee5840 7e 4d 41 52 4b 63 48 55 41 66 6d 73 42 49 68 7e ~MARKcHUAfmsBIh~

bcee5850 0a 00 02 98 00 25 53 45 43 5f 4e 41 4d 45 3d 7e %SEC_NAME=~

bcee5860 43 6f 6d 6d 75 6e 69 74 79 4f 70 65 72 61 74 6f CommunityOperato

bcee5870 72 52 65 61 64 4f 6e 6c 79 7e 0a 00 02 98 00 0e rReadOnly~......

bcee5880 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 02 STORAGETYPE=2...

bcee5890 98 00 02 29 0a 00 02 a0 00 08 53 4e 4d 50 53 20 ...)......SNMPS

bcee58a0 28 0a 00 02 a0 00 0d 52 4f 57 5f 53 54 41 54 55 (......ROW_STATU

bcee58b0 53 3d 31 0a 00 02 a0 00 09 43 4f 4d 5f 49 44 3d S=1......COM_ID=

bcee58c0 32 0a 00 02 a0 00 16 4e 41 4d 45 3d 7e 4d 41 52 2......NAME=~MAR

bcee58d0 4b 63 48 55 41 66 6d 73 42 49 68 7e 0a 00 02 a0 KcHUAfmsBIh~....

bcee58e0 00 07 56 49 45 57 3d 33 0a 00 02 a0 00 02 29 0a ..VIEW=3......).

bcee58f0 00 02 a0 00 01 0a fe ff ff ff ff ff ff ff ff ff

bcee5900 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

bcee5910 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

bcee5800 4e 4d 50 56 33 43 4f 4d 4d 55 4e 49 54 59 20 28 NMPV3COMMUNITY (

bcee5810 0a 00 02 98 00 0d 52 4f 57 5f 53 54 41 54 55 53 ROW_STATUS

bcee5820 3d 31 0a 00 02 98 00 09 4e 41 4d 45 3d 7e 32 7e =1......NAME=~2~

bcee5830 0a 00 02 98 00 1b 43 4f 4d 4d 5f 4e 41 4d 45 3d COMM_NAME=

bcee5840 7e 4d 41 52 4b 63 48 55 41 66 6d 73 42 49 68 7e ~MARKcHUAfmsBIh~

bcee5850 0a 00 02 98 00 25 53 45 43 5f 4e 41 4d 45 3d 7e %SEC_NAME=~

bcee5860 43 6f 6d 6d 75 6e 69 74 79 4f 70 65 72 61 74 6f CommunityOperato

bcee5870 72 52 65 61 64 4f 6e 6c 79 7e 0a 00 02 98 00 0e rReadOnly~......

bcee5880 53 54 4f 52 41 47 45 54 59 50 45 3d 32 0a 00 02 STORAGETYPE=2...

bcee5890 98 00 02 29 0a 00 02 a0 00 08 53 4e 4d 50 53 20 ...)......SNMPS

bcee58a0 28 0a 00 02 a0 00 0d 52 4f 57 5f 53 54 41 54 55 (......ROW_STATU

164 | ProCurve Switch 2610-48 investigation

bcee58b0 53 3d 31 0a 00 02 a0 00 09 43 4f 4d 5f 49 44 3d S=1......COM_ID=

bcee58c0 32 0a 00 02 a0 00 16 4e 41 4d 45 3d 7e 4d 41 52 2......NAME=~MAR

bcee58d0 4b 63 48 55 41 66 6d 73 42 49 68 7e 0a 00 02 a0 KcHUAfmsBIh~....

bcee58e0 00 07 56 49 45 57 3d 33 0a 00 02 a0 00 02 29 0a ..VIEW=3......).

bcee58f0 00 02 a0 00 01 0a fe ff ff ff ff ff ff ff ff ff

bcee5900 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

<SNIP>

==

NODE INFO

Filename: mgrinfo.txt

Address: 0xbcee7ea0

Is Active?: No

Next node address: 0xbcee7f20

Date: 0x00 0x00 0x00 0x63

Active flags: 0x00 0x00

Size [bytes]: 96

Data, first 32bytes are header, next bytes are data:

bcee7ea0 6d 67 72 69 6e 66 6f 2e 74 78 74 00 ff ff ff ff mgrinfo.txt.....

bcee7eb0 00 00 00 60 00 00 00 63 bc ee 7f 20 00 00 ff ff ...`...c..�

bcee7ec0 00 00 00 01 46 4c 47 00 4d 41 52 4b 67 4f 74 73 FLG.MARKgOts

bcee7ed0 79 6a 52 73 62 4f 00 00 00 00 00 00 00 00 00 00 yjRsbO..........

bcee7ee0 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff

bcee7ef0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bcee7f00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

bcee7f10 00 00 00 00 00 00 00 00 00 00 00 02 06 00 00 00

==

Appendix G | 165

Appendix G. Source Code for MPC862 mem controller decoder

Output listing 6-13: MPC862 memory controller configuration decoder in Java
 package termit;

/**

 * @author magnus at-sign stril.com

 * Class for decoding a Freescale MPC862 Base

 * Register and address mask in the Memory Controller Names and

 * nomenclature according to

 * "MPC862 PowerQUICC Integrated Communications Processor Family Reference Manual,
Rev. 3"

 * chapter 15. The spec seems to have "bit0" as the MSB in the register

 * which is a bit strange.

 *

 *

 */

public class MPC862memoryControl {

 public enum PORT_SIZE {

 BIT32, BIT8, BIT16, RESERVED

 };

 public enum MACHINE_SELECT {

 GPCM, RESERVED, UPMA, UPMB

 };

 private long register; // register number 0-7

 private long br; // BR field 16bits

 private long or; // OR field 16bits

 static MPC862memoryControl[] mems =

 new MPC862memoryControl[8];

 /**

 * @param args

 */

 public static void main(String[] args) {

 String[] br_strings = new String[] { "0xfff00401", "0x00000081",

 "0x040000c1", "0x050000c1", "0x02000081", "0x00000000",

 "0x60000901", "0x68000401" };

 String[] or_strings = new String[] { "0xfff005a6", "0x7e000600",

 "0x7f000600", "0x7f000600", "0x7e000600", "0x00000000",

 "0xfe000190", "0xfff001a8" };

 for (int i = 0; i < br_strings.length; i++) {

 MPC862memoryControl mem = new MPC862memoryControl(i,

 Long.decode(br_strings[i]), Long.decode(or_strings[i]));

 mems[i] = mem;

 System.out.println(mem);

 }

166 | Source Code for MPC862 mem controller decoder

 // Below needs some further debugging to work

 /*

 * System.out.println("RAM 0x10000 is controlled by # " +

 * findController(0x10000).getRegisterNumber());

 * System.out.println("EEPROM 0x68000000 is controlled by # " +

 * findController(0x68000000).getRegisterNumber());

 * System.out.println("Flash 0x60000000 is controlled by # " +

 * findController(0x60000000).getRegisterNumber());

 */

 }

 public MPC862memoryControl(int register, long br, long or) {

 super();

 this.register = register;

 this.br = br;

 this.or = or;

 }

 public long getRegisterNumber() {

 return this.register;

 }

 public long getBa() {

 // MSB bits 0-16

 return extractBitValue(br, 15, 31);

 }

 public long getAt() {

 return extractBitValue(br, 12, 14);

 }

 public PORT_SIZE getPs() {

 long size = extractBitValue(br, 10, 11);

 switch ((int) size) {

 case 0:

 return PORT_SIZE.BIT32;

 case 1:

 return PORT_SIZE.BIT8;

 case 2:

 return PORT_SIZE.BIT16;

 case 3:

 return PORT_SIZE.RESERVED;

 default:

 System.out.println("Error: undefined PORT_SIZE: "

 + String.valueOf(size));

 System.exit(1);

 }

 // should never get here...

 return PORT_SIZE.RESERVED;

Source Code for MPC862 mem controller decoder | 167

 }

 public boolean getParity() {

 return extractBitValue(br, 9, 9) == 1;

 }

 public boolean getWp() {

 return extractBitValue(br, 8, 8) == 1;

 }

 public MACHINE_SELECT getMs() {

 long ms = extractBitValue(br, 6, 7);

 switch ((int) ms) {

 case 0:

 return MACHINE_SELECT.GPCM;

 case 1:

 return MACHINE_SELECT.RESERVED;

 case 2:

 return MACHINE_SELECT.UPMA;

 case 3:

 return MACHINE_SELECT.UPMB;

 default:

 System.out.println("Error: undefined MACHINE_SELECT: "

 + String.valueOf(ms));

 System.exit(1);

 }

 // should never get here...

 System.exit(1);

 return MACHINE_SELECT.RESERVED;

 }

 public long getReserved() {

 return extractBitValue(br, 1, 5);

 }

 public boolean getValid() {

 return extractBitValue(br, 0, 0) == 1;

 }

 public long getBr() {

 return br;

 }

 // OR fields access methods

 public long getMA() {

 return extractBitValue(or, 15, 31);

 }

 public String toString() {

 String str = "****Memory Control Register # " + register

168 | Source Code for MPC862 mem controller decoder

 + ": Base Register 0x" + Long.toHexString(br)

 + " Option Register 0x" + Long.toHexString(or) + "\n";

 str += "BA, Baseaddress:\t0x" + Long.toHexString(getBa()) + "\t"

 + Long.toBinaryString(getBa()) + "\n";

 str += "MA, Maskaddress:\t0x" + Long.toHexString(getMA()) + "\t"

 + Long.toBinaryString(getMA()) + "\n";

 str += "AT, Address Type:\t" + new Long(getAt()) + "\n";

 str += "PS, Portsize \t\t" + getPs() + "\n";

 str += "Parity:\t\t\t" + getParity() + "\n";

 str += "Write Protect:\t\t" + getWp() + "\n";

 str += "MS, Machine Select:\t" + getMs() + "\n";

 str += "Reserved (should be 0):\t" + new Long(getReserved()) + "\n";

 str += "Valid:\t\t\t" + getValid() + "\n";

 return str;

 }

 // true if this controller matches an address (32 bit)

 public boolean matchesAddress(long a) {

 a = a >>> 14; // remove the 14 lsb which are not used in the compare

 long mask = this.getMA();

 long x = this.getBa() & mask;

 long y = a & mask;

 boolean z = x == y;

 return ((this.getBa() & mask) == (a & mask));

 }

 // returns the controller for an address

 static public MPC862memoryControl findController(long address) {

 MPC862memoryControl m;

 for (int i = 0; i <= 7; i++) {

 m = mems[i];

 if (m.matchesAddress(address) && m.getValid()) {

 return mems[i];

 }

 }

 return null;

 }

 // extracts the value between and including startbit and end bit inside

 // data.

 // bits start counting at 0

 static long extractBitValue(long data, int startbit, int endbit) {

 // mask away everything above the endbit

 long mask = (2 << endbit) - 1;

 data = data & mask;

 // shift everything right so startbit becomes first bit

 data = data >>> startbit;

Source Code for MPC862 mem controller decoder | 169

 return data;

 }

}

Appendix H | 171

Appendix H. Sanitty source code

Output listing 6-14: term.h
/*

* Utilities for dealing with serial port terminal communication.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#ifndef term_INCLUDED

#define term_INCLUDED

#include <stdio.h> //FILE

//Constants

//static const int READ_CHUNK = 4096; //amount to try and read

static const int READ_DELAY = 50; //delay in millisec between two reads

static const int OS_READ_BUFFER_SIZE = 4096;

//Buffer to store read data into while waiting for a string

#define term_READ_BUFFER_SIZE 1024*1024

//Error constants

#define term_err_NO_CMD_ECHO -1

#define term_err_BUFFER_OVERFLOW -2

#define term_err_TIMEOUT -3

#define term_err_NO_PROMPT_FOUND -4

 static const int TERM_ALLOWED_SPEEDS[] = { 110, 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200 };

 static const char* TERM_ALLOWED_SPEEDS_STR[] = { "110", "300", "600", "1200",
"2400", "4800", "9600", "19200", "38400", "57600", "115200" };

 static char* term_newline_str="\n\r";

 //get/set new line str;

 void term_setLineDelim(char*);

 char* term_getLineDelim();

//get/set the prompt to be used by cmdXXXX methods

 void term_setPrompt(char*);

 char* term_getPrompt();

// ==

//@{

// Does the following

// 1. Empties the receive buffer.

// 2. Sends a command

// 3. Waits for the new prompt.

172 | Sanitty source code

 // 4 Checks so the command itself is echoed

//

// @param cmd String to send. terminal_getNewLineStr() will be added automatically
to the end.

// @param prompt String to wait for. If NULL, the prompt set by
term_setPrompt(char*) will be used.

// @returns 0 for success. -1 of the command couldn't be found in the echo stream, -
2 for buffer overrun, -3 for timeout .

//@}

// ==

int term_sendCmd(char* cmd, char* prompt);

// ==

//@{

// Does the following

// 1. Empties the receive buffer.

// 2. Sends a command

// 3. Waits for the new prompt.

// 4 Returns data received between the end of the command and the beginning of the
new prompt following the result

//

// @param cmd String to send. terminal_getNewLineStr() will be added automatically
to the end.

// @param prompt String to wait for. If NULL, the prompt set by
term_setPrompt(char*) will be used.

// @param prompt res res should have a size of at least term_READ_BUFFER_SIZE

// @returns Number of chars written into res,-1 of the command couldn't be found in
the echo stream, -2 for buffer overrun, -3 for timeout, -4 Prompt could not be
recovered

//@}

// ==

int term_sendCmdGetRes(char* cmd, char* prompt, char* res);

// ==

//@{

// Read whatever is in the os receive buffer. Non blocking.

// buf mues have space for at least OS_READ_BUFFER_SIZE bytes.

// All other read methods must use this method if the data goes to inputLog.

//

// @param buf Pointer to buffer to write data

// @param nbytes Max number of bytes to read

// @returns -1 on error, or number of bytes read.

//@}

// ==

 int term_read(char* buf);

 //empties the read buffer.

 void term_emptyReadBuffer();

// ==

//@{

// Write a null terminated string. Blocks until all data is written

//

Sanitty source code | 173

// @param string String to write

// @returns 1 on success. 0 on error.

//@}

// ==

int term_send(char* string);

//set timeout used for response waiting routines

void term_setTimeout(long ms);

//comport should be previously opened with RS232_OpenComport()...

//void term_setComPort(int comport);

//return 1 on fail

int term_open(int comport, int speed, char *mode);

void term_changeSpeed(int speed);

void term_close();

// ==

//@{

// get the current prompt line from the device.

// Sends a term_getLineDelim() waits 250ms and then returns

// a new malloc:ed string with the prompt line wihtout any surrounding
term_getLineDelim()

// @returns a new malloc:ed string with the prompt line wihtout any surrounding
term_getNewlineStr()

// @returns NULL on failiure

//@}

// ==

char* term_getPromptFromDevice();

// ==

//@{

//waitfor a string and discard all data read during wait

//Returns pointer in buffer where the first char of str was found

//or NULL if timeout or read buffer out

// @param str String to look for

// @returns 0 if sucessful, -2 for buffer overrun, -3 for timeout .

//@}

// ==

int term_waitfor(char* str);

//waitfor a string and return all data read during wait.

void term_readUntil(char* str);

174 | Sanitty source code

//methods for copying out the input to a file. If set a copy of the input will go
to this file

void term_setTermLog(FILE *stream);

//term_removeInputLog(FILE *stream);

void term_test();

// ==

//@{

// Read n bytes

//

// Read n bytes or stop at timeout,

// @param buffer Memory to read to

// @param nbytes Number of bytes to read

// @returns number of bytes read. May be less than nbytes if timeouted

//@}

// ==

int term_readn(char* buffer, int nbytes);

//utility funcitons

// ==

//@{

// Extracts a line from a text buffer. getLineDelim() is used a line delimeter

//

// @param buf Text to extract line from

// @param buf_size, buffer siz in bytes

// @param linenum Line to extract. First line is 0

// @returns a new malloced string with the line or NULL if not found

//@}

// ==

char* term_util_extractLine(char* buf, int buf_size, int linenum);

// substring search utility function

// Stolen from https://github.com/rescrv/e/blob/master/memmem.h and modified

// Useful when searching for data when data or key are nut nullterminated.

// @param haystack pointer to seartch from

// @param haystack_len length of data to search

// @param needle pointer to needle

// @param needle_len needle length

// @returns pointer to beginning of needle if found in data. Or NULL if not found.

//@}

// ==

void *term_util_memmem(const void *haystack, size_t haystack_len, const void
*needle, size_t needle_len);

Sanitty source code | 175

// ==

//@{

// Decodes a block of hexdump into binary: should be in the following format:

// bcee0000 2e 62 6f 6f 74 62 6c 6f 63 6b 00 ff ff ff ff ff .bootblock......

// bcee0010 00 00 04 e0 ff ff ff ff bc ee 05 00 00 ff ff ff

// bcee0020 ff ff ff ff ff ff ff ff 00 00 00 dc ff ff ff ff

// @param str A hexdump format string, can be multiline. Must be null terminated.

// @param buf Memory to write converted bytes to (big enough).

// @returns Number of bytes successfully converted.

//@}

// ==

int term_util_hexdump2bytes(char* str, char* buf);

#endif /* term included */

176 | Sanitty source code

Output listing 6-15: pcbench.h
/* Procurve bench mode utilities

* Contains utility functions for controlling a HP procurve switch over

* edomtset/bench terminal mode.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#ifndef pcbench_INCLUDED

#define pcbench_INCLUDED

#include <inttypes.h>

#include <stdio.h> /*FILE descriptor*/

#define pcbench_nvfs_node_HEADERSIZE 32 //size of the header structure

struct pcbench_nvfs_node {

 /*The _nodeAddress is just a local field to remember where this node is on the
flash.*/

 unsigned long _nodeAddress;

 //Below are fields that exist on the actual node in the nv file system

 char *fname; //16 byte (incl terminating NULL) filename

 uint32_t datasize; //size of data filed in bytes

 unsigned char date[4];

 uint32_t nextp;

 unsigned char activeflag[2]; //activeflag[1]=FF means active. 00 means inactive

 uint16_t flags; //unknown use

 unsigned char* data;

};

//Public variables

static char* pcbench_partnrStr = NULL;

//Provurve model list

#define pcbench_MODEL_J9088A 1

//Procurve model infos

struct pcbench_model_info {

 char* systemName; //must match entry from "show system-
information"

 char* name;

 char* partnr;

 unsigned long flashBaseAddress;

 unsigned long flashSize; //in bytes

 char* flashChipName;

 /*below is the program sequence to unlock the flash chip

 address is relative flashBaseAddress. Eg the abolute address to use will be

Sanitty source code | 177

 flashBaseAddress+flashProgramUnlockSeqAddr[x]

 */

 unsigned long flashProgramUnlockSeqAddr[64];

 unsigned char flashProgramUnlockSeqData[64]; // byte array

 int flashProgramUnlockSeqLength; //should be less than 64

};

// ==

//@{

// Tries to enter bench mode using the following strategy:

// Send \n\n at maxspeed rate to trigger the procurves auto sense feature.

// wait for "Connected at" reply, or prompt

// repeat the above for about 1 minute in case the unit is rebooting.

// If maxspeed rate does not produce a reply, the unit may already be booted.

// Send \n for all speeds below maxrate and see which produces a prompt

// Enter username + password if supplied and asked for

// Disable timeout and terminal length

// @param maxspeed max baud rate for com port

// @param username username

// @param nbytes password

// @returns 0 if successful.

//@}

// ==

int pcbench_enterBenchMode(int maxspeed);

// ==

//@{

// returns the model info parametrs for a given model string.

// @param modelStr A model string equivalent to the pcbench_modelStr

// set during enterBenchMode

// @returns pointer to a info block, or NULL if not found.

//@}

// ==

struct pcbench_model_info *pcbench_getModelInfo(char* modelStr);

// ==

//@{

// Get all the device which is on the model database

// @returns a null terminated pointer array to the models handled.

//@}

// ==

struct pcbench_model_info **pcbench_getModelDB();

// ==

//@{

// Sets the model info for the device to use through out the session.

// This is needed for the flash programming to work.

// @param mod Pointer to the model info to use

//@}

// ==

178 | Sanitty source code

void pcbench_setCurrentModel(struct pcbench_model_info *mod);

// ==

//@{

// Gets the model info for the device currently set.

// This is needed for the flash programming to work.

// @returns Pointer to the model info struct currently used

//@}

// ==

struct pcbench_model_info *pcbench_getCurrentModel();

// ==

//@{

// Reads bytes from the switch memory.

//

// @param address Address to read from

// @param bytes Number of bytes to read

// @param Memory to store read bytes to

// @returns Number of successfully read bytes

//@}

// ==

int pcbench_memReadBytes(unsigned long address, size_t bytes, char* buf);

// ==

//@{

// Reads contents from memory and writes it to a file

//

// @param address Address to read from

// @param bytes Number of bytes to read

// @param fd file to write to

// @returns Number of successfully read+written bytes

//@}

// ==

int pcbench_memDumpToFile(unsigned long address, size_t bytes, FILE* fd);

// ==

//@{

// writes all contents of flash to a file

//

// @param file File to write to

// @returns 0 if successful

//@}

// ==

int pcbench_flashDumpToFile(char* file);

// ==

//@{

// Writes a byte to the flash memory without verification

//

// @param address Address to start writing to

// @returns 0 if succesful.

Sanitty source code | 179

//@}

// ==

int pcbench_memWriteByteFlash(unsigned long address, unsigned char byte);

// ==

//@{

// Writes a byte to the memory without verification

//

// @param address Address to start writing to

// @returns 0 if succesful.

//@}

// ==

int pcbench_memWriteByteFlash(unsigned long address, unsigned char byte);

// ==

//@{

// Fetches a NVFS node from the switch

// The storage of the fetched node is malloc:ed so it has to be freed

// later.

//

// @returns Address to the fetched node. Null if unsuccessful.

//@}

// ==

struct pcbench_nvfs_node* pcbench_nvfs_fetchNode(unsigned long add);

// ==

//@{

// Returns the address of the first nvfs node (.bootblock file)

//

// @returns Address to first nvfs node

//@}

// ==

unsigned long pcbench_nvfs_getFirstNodeAddr();

// ==

//@{

// Check if a NVFSnode is active (by looking in the active flag)

//

// @param node Pointer to node

// @returns 1 if active, 0 if not active

//@}

// ==

int pcbench_nvfs_isActiveNode(struct pcbench_nvfs_node* node);

// ==

//@{

// Checks if a NVFSnode is is the last node

//

180 | Sanitty source code

// @param node Pointer to node

// @returns 1 if last, ie nodes next pointer is 0xffffffff, 0 if not last

//@}

// ==

int pcbench_nvfs_isLastNode(struct pcbench_nvfs_node* node);

// ==

//@{

// Check if a NVFSnode is sanitized, eg all data portion is 0x00

// The check is done on the local node struct. NOT the switch memory itself.

// @param node Pointer to node

// @returns 1 if sanitized, 0 if not

//@}

// ==

int pcbench_nvfs_isSanitized(struct pcbench_nvfs_node* node);

// ==

//@{

// Sends the edomtset sm mode command to control how the read command

// displays memory and the width of the read access (byte, word, etc).

// The reason for putting this in a separate function is that if

// the current mode setting is equivalent to what we are about to send

// we can avoid sending the same comand again and thus speed up repetative

// large block reads of memory.

//

// @param smCmdStr The sm mode set command string.

// @returns 1 if successful, 0 if problem.

//@}

// ==

pcbench_send_SMconfigSetup(char* cmd);

// ==

//@{

// Overwrites the data portion of this nvfs node with 0x00.

// The writes takes place in the device flash.

// After the writes have been done in the flash the data is

// is syncronized. I.e data is read back fot verification and node

// will point to structure which corresponds to the flash node.

//

// @param node The node to sanitize.

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_sanitizeNode();

// ==

//@{

// Overwrites the data portion of all inactive nodes.

Sanitty source code | 181

// If the sanitizeActivetoo is passed active nodes except the

//.bootblock node are sanitized too. (I'm uncertain of its use.)

// The writes takes place in the device flash and is verified.

//

// @param sanitizeActivetoo:

// 0 will prevent active nodes to be sanitized

// !0 will also sanitize active nodes except the first .bootblock

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_sanitizeAll(int sanitizeActivetoo);

// ==

//@{

// Checks if a nv fsnode is with 0x00.

// And verifies.

//

// @param node The node to sanitize.

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_sanitizeNode(struct pcbench_nvfs_node* node);

// ==

//@{

// Writes the contents of the nv file chain to a file

// in hexdump style.

//

// @param file filename of output file

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_dumpAllToFile(char* file);

#endif /* pcbench_INCLUDED*/

182 | Sanitty source code

Output listing 6-16: term.c
/*

* Utilities for dealing with serial port terminal communication.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#include <time.h>

#include <stdio.h> //for inputLog file writing

#include <assert.h>

#include <string.h>

#include "term.h"

#include "log.h"

#include "rs232.h" // Teunis van Beelen's RS232 library

#if defined(__linux__) || defined(__FreeBSD__)

#include <unistd.h> //sleep();

#else

#include <windows.h> //sleep();

#endif

//routines for dealing with the terminal communication

//private variables

static int port=0;

static long timeout = 20000; //millisecs

static time_t timeZero=0; //time at which timer was started. Initialize to avoid
compiler warning.

static FILE* inputLogFile;

static int maxspeed=115200;

static int speed=0;

static char* mode;

static char* prompt;

//private methods

static void timerReset(); //sets timer to 0;

static long getTimer(); //get time in millisec after last timeReset()

static unsigned char buf[term_READ_BUFFER_SIZE];

static void timerReset() {

 time(&timeZero);

}

static long getTimer() {

 time_t now;

 time(&now);

Sanitty source code | 183

 return (long)(difftime(now, timeZero) * 1000);

}

void term_setTimeout(long ms) {

 timeout = ms;

 log_msg(LOG_DEBUG, "term_setTimeout: changed timeout");

}

void term_setNewlineStr(char* str) { term_newline_str = str; }

char* term_getLineDelim(){ return term_newline_str; }

void term_setLineDelim(char* str){ term_newline_str = str; }

void term_setPrompt(char* p) { prompt = p; }

char* term_getPrompt(){ return prompt; }

//comport should be previously opened with RS232_OpenComport()...

/*void term_setComPort(int port) {

 comPort = port;

}*/

int term_open(int comport, int speedIn, char *modeIn) {

 port = comport;

 speed = speedIn;

 mode = modeIn;

 return RS232_OpenComport(port, speed, mode);

}

/*

void term_setMaxSpeed(int speed) {

 maxspeed = speed;

}

*/

void term_changeSpeed(int newSpeed) {

 if (speed != newSpeed) {

 term_close();

 speed = newSpeed;

 term_open(port, speed, mode);

 }

}

void term_close() {

 RS232_CloseComport(port);

}

void term_setTermLog(FILE* f){

 inputLogFile = f;

}

int term_read(char* buf) {

 int i;

184 | Sanitty source code

 i = RS232_PollComport(port, buf, OS_READ_BUFFER_SIZE);

 //printf("received %i bytes\n", i);

 if (inputLogFile) {

 for (int j = 0; j < i; j++) {

 fputc(buf[j], inputLogFile);

 }

 }

 fflush(inputLogFile);

 /*If the buffer is filled we might have lost input*/

 if (i == OS_READ_BUFFER_SIZE) {

 log_error("RS232 input buffer filled. Possbile input data loss");

 return -1;

 }

return i;

}

void term_emptyReadBuffer(){

 RS232_PollComport(port, buf, OS_READ_BUFFER_SIZE);

}

//waitfor a string and discard all data read during wait.

//Some data received after the found string may also be discarded from the read
buffer.

int term_waitfor(char* str){

 unsigned char* bufCur=buf;

 char* ptr;

 int i;

 timerReset();

 while (1) {

 if (getTimer() > timeout) {

 log_msgn_NULLTERM(LOG_DEBUG, "Timout waiting for: ", str, NULL);

 return term_err_TIMEOUT;

 }

 /*if another read could overrun our read buffer size*/

 if (bufCur + OS_READ_BUFFER_SIZE >= buf + term_READ_BUFFER_SIZE) {

 log_msgn_NULLTERM(LOG_DEBUG, "Buffer overflow waiting for: ", str, NULL);

 return term_err_BUFFER_OVERFLOW;

 }

 i= term_read(bufCur);

 bufCur += i;

 //Todo optimization: Dont research all buffer from beginning every time

 if (ptr= term_util_memmem(buf, bufCur - buf, str, strlen(str)))

Sanitty source code | 185

 return 0; //success

 Sleep(READ_DELAY);

 }

 //should never get here

 assert(0);

 return -100;

}

int term_sendCmdGetRes(char* cmd, char* prompt, char* res){

 char* start;

 char* end;

 int len;

 int ret;

 if (!prompt)

 prompt = term_getPrompt();

 term_emptyReadBuffer();

 term_send(cmd);

 term_send(term_getLineDelim());

 ret = term_waitfor(prompt); //puts received data in buf variable

 if (ret)

 return ret;

 end = term_util_memmem(buf, term_READ_BUFFER_SIZE, prompt, strlen(prompt));

 if (!end) {

 log_msgn_NULLTERM(LOG_DEBUG, "term_sendCmd: Command <", cmd, "> sent. But
prompt <", prompt, "> never found.", NULL);

 return term_err_NO_PROMPT_FOUND;

 }

 start = term_util_memmem(buf, OS_READ_BUFFER_SIZE, cmd, strlen(cmd));

 if (!start) {

 log_msgn_NULLTERM(LOG_DEBUG, "term_sendCmd: Command <", cmd, "> sent. But echo
never read.", NULL);

 return term_err_NO_CMD_ECHO;

 }

 start += strlen(cmd); //skip the command itself

 //skip new line after command

 if (!strncmp(start, term_getLineDelim(), strlen(term_getLineDelim()))){

 start += strlen(term_getLineDelim());

 }

 len = end - start;

 memcpy(res, start, len);

 res[len] = 0; //null terminate to make a string

 return len;

}

186 | Sanitty source code

int term_sendCmd(char* cmd, char* prompt){

 if (!prompt)

 prompt = term_getPrompt();

 term_emptyReadBuffer();

 term_send(cmd);

 term_send(term_getLineDelim());

 if (term_waitfor(prompt)) {

 log_msgn_NULLTERM(LOG_DEBUG, "term_sendCmd: Command <", cmd, "> sent. But
prompt <", prompt, "> never found.", NULL);

 return term_err_NO_PROMPT_FOUND;

 }

 if (!term_util_memmem(buf, OS_READ_BUFFER_SIZE, cmd, strlen(cmd))) {

 log_msgn_NULLTERM(LOG_DEBUG, "term_sendCmd: Command <", cmd, "> sent. But echo
never read.", NULL);

 return term_err_NO_CMD_ECHO;

 }

 return 0;

}

//blocking

//return 0 on fail

int term_send(char* string) {

 int l = strlen(string);

 if (RS232_SendBuf(port, string, strlen(string)) != l) {

 return 0;

 }

 return 1;

}

void term_test(){

 log_debug("TimerTest");

 timerReset();

 while (TRUE) {

 printf("%u\n", getTimer());

 Sleep(1000);

 }

}

char* term_getPromptFromDevice(){

 int len;

 //extract the full line prompt

 term_emptyReadBuffer();

Sanitty source code | 187

 term_send(term_getLineDelim());

 Sleep(250);

 len=term_read(buf);

 //line 0 is new line cho. line 1 is prompt.

 return term_util_extractLine(buf, len, 1);

}

char* term_util_extractLine(char* buf, int buf_size, int line){

 char* end;

 char* lineStr;

 int len;

 end = term_util_memmem(buf, buf_size, term_getLineDelim(),
strlen(term_getLineDelim()));

 if (line==0) {

 if (!end) {

 end = buf + buf_size; //set end of line at end of buffer

 }

 len = end - buf;

 lineStr = malloc(len + 1);

 assert(lineStr);

 strncpy(lineStr, buf, len);

 lineStr[len] = '\0';

 return lineStr;

 }

 //line >1 but no more rows

 if (!end) {

 return 0;

 }

 // for lines > 1 continue recursively with the rest of the lines

 return term_util_extractLine(

 end + strlen(term_getLineDelim()), //advance to beginning of
next line

 buf_size - (end - buf + strlen(term_getLineDelim())), //remove this line
from text size

 --line);

}

/* Substring search utility function.

* Stolen from https://github.com/rescrv/e/blob/master/memmem.h and modified

* XXX: Partially adapted from code which contianed this

* copyright:

* Byte-wise substring search, using the Two-Way algorithm.

* Copyright (C) 2008, 2010 Eric Blake

* Permission to use, copy, modify, and distribute this software

188 | Sanitty source code

* is freely granted, provided that this notice is preserved.

*/

void *term_util_memmem(const void *haystack, size_t haystack_len,

 const void *needle, size_t needle_len)

{

 const char *begin = (const char*)haystack;

 const char *last_possible = begin + haystack_len - needle_len;

 const char *tail = (const char*)needle;

 char point;

 /*

 * The first occurrence of the empty string is deemed to occur at

 * the beginning of the string.

 */

 if (needle_len == 0)

 return (void *)begin;

 /*

 * Sanity check, otherwise the loop might search through the whole

 * memory.

 */

 if (haystack_len < needle_len)

 return NULL;

 point = *tail++;

 for (; begin <= last_possible; begin++) {

 if (*begin == point && !memcmp(begin + 1, tail, needle_len - 1))

 return (void *)begin;

 }

 return NULL;

}

// ==

//@{

// Decodes a block of hexdump into binary: should be in the following format:

// bcee0000 2e 62 6f 6f 74 62 6c 6f 63 6b 00 ff ff ff ff ff .bootblock......

// bcee0010 00 00 04 e0 ff ff ff ff bc ee 05 00 00 ff ff ff

// bcee0020 ff ff ff ff ff ff ff ff 00 00 00 dc ff ff ff ff

// @param str A hexdump format string, can be multiline. Must be null terminated.

// @param buf Memory to write converted bytes to (big enough).

// @returns Number of bytes successfully converted.

//@}

// ==

int term_util_hexdump2bytes(char* str, char* destbuf){

Sanitty source code | 189

 char* lineStr;

 char hexbyteStr[3];

 char* tok;

 int line = 0;

 char* delim = " ";

 size_t bytesDecoded=0;

 int bytesPerLine = 16;

 while (lineStr = term_util_extractLine(str, strlen(str), line)) {

 //todo check address continuity

 tok = strstr(lineStr, " ");

 if (!tok)

 return bytesDecoded; //this row has no double space so it is not a hexdump
data row

 tok += 2;

 //tok now points to the first byte in the line to decode.

 //write all pairs until we hit double space again

 while (!(tok[0] == ' ' && tok[1] == ' ')) {

 if (tok[0] == ' ') //skip SINGLE space between bytes

 tok++;

 hexbyteStr[0] = *tok;

 hexbyteStr[1] = *(tok + 1);

 hexbyteStr[2] = '\0';

 *(destbuf++) = (char)strtoul(hexbyteStr, NULL, 16);

 bytesDecoded++;

 tok += 2;

 }

 free(lineStr);

 line++;

 }

 return bytesDecoded;

}

190 | Sanitty source code

Output listing 6-17: pcbench.h
/* Procurve bench mode utilities

* Contains utility functions for controlling a HP procurve switch over

* edomtset/bench terminal mode.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#ifndef pcbench_INCLUDED

#define pcbench_INCLUDED

#include <inttypes.h>

#include <stdio.h> /*FILE descriptor*/

#define pcbench_nvfs_node_HEADERSIZE 32 //size of the header structure

struct pcbench_nvfs_node {

 /*The _nodeAddress is just a local field to remember where this node is on the
flash.*/

 unsigned long _nodeAddress;

 //Below are fields that exist on the actual node in the nv file system

 char *fname; //16 byte (incl terminating NULL) filename

 uint32_t datasize; //size of data filed in bytes

 unsigned char date[4];

 uint32_t nextp;

 unsigned char activeflag[2]; //activeflag[1]=FF means active. 00 means inactive

 uint16_t flags; //unknown use

 unsigned char* data;

};

//Public variables

static char* pcbench_partnrStr = NULL;

//Provurve model list

#define pcbench_MODEL_J9088A 1

//Procurve model infos

struct pcbench_model_info {

 char* systemName; //must match entry from "show system-
information"

 char* name;

 char* partnr;

 unsigned long flashBaseAddress;

 unsigned long flashSize; //in bytes

 char* flashChipName;

 /*below is the program sequence to unlock the flash chip

 address is relative flashBaseAddress. Eg the abolute address to use will be

Sanitty source code | 191

 flashBaseAddress+flashProgramUnlockSeqAddr[x]

 */

 unsigned long flashProgramUnlockSeqAddr[64];

 unsigned char flashProgramUnlockSeqData[64]; // byte array

 int flashProgramUnlockSeqLength; //should be less than 64

};

// ==

//@{

// Tries to enter bench mode using the following strategy:

// Send \n\n at maxspeed rate to trigger the procurves auto sense feature.

// wait for "Connected at" reply, or prompt

// repeat the above for about 1 minute in case the unit is rebooting.

// If maxspeed rate does not produce a reply, the unit may already be booted.

// Send \n for all speeds below maxrate and see which produces a prompt

// Enter username + password if supplied and asked for

// Disable timeout and terminal length

// @param maxspeed max baud rate for com port

// @param username username

// @param nbytes password

// @returns 0 if successful.

//@}

// ==

int pcbench_enterBenchMode(int maxspeed);

// ==

//@{

// returns the model info parametrs for a given model string.

// @param modelStr A model string equivalent to the pcbench_modelStr

// set during enterBenchMode

// @returns pointer to a info block, or NULL if not found.

//@}

// ==

struct pcbench_model_info *pcbench_getModelInfo(char* modelStr);

// ==

//@{

// Get all the device which is on the model database

// @returns a null terminated pointer array to the models handled.

//@}

// ==

struct pcbench_model_info **pcbench_getModelDB();

// ==

//@{

// Sets the model info for the device to use through out the session.

// This is needed for the flash programming to work.

192 | Sanitty source code

// @param mod Pointer to the model info to use

//@}

// ==

void pcbench_setCurrentModel(struct pcbench_model_info *mod);

// ==

//@{

// Gets the model info for the device currently set.

// This is needed for the flash programming to work.

// @returns Pointer to the model info struct currently used

//@}

// ==

struct pcbench_model_info *pcbench_getCurrentModel();

// ==

//@{

// Reads bytes from the switch memory.

//

// @param address Address to read from

// @param bytes Number of bytes to read

// @param Memory to store read bytes to

// @returns Number of successfully read bytes

//@}

// ==

int pcbench_memReadBytes(unsigned long address, size_t bytes, char* buf);

// ==

//@{

// Reads contents from memory and writes it to a file

//

// @param address Address to read from

// @param bytes Number of bytes to read

// @param fd file to write to

// @returns Number of successfully read+written bytes

//@}

// ==

int pcbench_memDumpToFile(unsigned long address, size_t bytes, FILE* fd);

// ==

//@{

// writes all contents of flash to a file

//

// @param file File to write to

// @returns 0 if successful

//@}

// ==

int pcbench_flashDumpToFile(char* file);

// ==

//@{

// Writes a byte to the flash memory without verification

Sanitty source code | 193

//

// @param address Address to start writing to

// @returns 0 if succesful.

//@}

// ==

int pcbench_memWriteByteFlash(unsigned long address, unsigned char byte);

// ==

//@{

// Writes a byte to the memory without verification

//

// @param address Address to start writing to

// @returns 0 if succesful.

//@}

// ==

int pcbench_memWriteByteFlash(unsigned long address, unsigned char byte);

// ==

//@{

// Fetches a NVFS node from the switch

// The storage of the fetched node is malloc:ed so it has to be freed

// later.

//

// @returns Address to the fetched node. Null if unsuccessful.

//@}

// ==

struct pcbench_nvfs_node* pcbench_nvfs_fetchNode(unsigned long add);

// ==

//@{

// Returns the address of the first nvfs node (.bootblock file)

//

// @returns Address to first nvfs node

//@}

// ==

unsigned long pcbench_nvfs_getFirstNodeAddr();

// ==

//@{

// Check if a NVFSnode is active (by looking in the active flag)

//

// @param node Pointer to node

// @returns 1 if active, 0 if not active

//@}

// ==

int pcbench_nvfs_isActiveNode(struct pcbench_nvfs_node* node);

// ==

194 | Sanitty source code

//@{

// Checks if a NVFSnode is is the last node

//

// @param node Pointer to node

// @returns 1 if last, ie nodes next pointer is 0xffffffff, 0 if not last

//@}

// ==

int pcbench_nvfs_isLastNode(struct pcbench_nvfs_node* node);

// ==

//@{

// Check if a NVFSnode is sanitized, eg all data portion is 0x00

// The check is done on the local node struct. NOT the switch memory itself.

// @param node Pointer to node

// @returns 1 if sanitized, 0 if not

//@}

// ==

int pcbench_nvfs_isSanitized(struct pcbench_nvfs_node* node);

// ==

//@{

// Sends the edomtset sm mode command to control how the read command

// displays memory and the width of the read access (byte, word, etc).

// The reason for putting this in a separate function is that if

// the current mode setting is equivalent to what we are about to send

// we can avoid sending the same comand again and thus speed up repetative

// large block reads of memory.

//

// @param smCmdStr The sm mode set command string.

// @returns 1 if successful, 0 if problem.

//@}

// ==

pcbench_send_SMconfigSetup(char* cmd);

// ==

//@{

// Overwrites the data portion of this nvfs node with 0x00.

// The writes takes place in the device flash.

// After the writes have been done in the flash the data is

// is syncronized. I.e data is read back fot verification and node

// will point to structure which corresponds to the flash node.

//

// @param node The node to sanitize.

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_sanitizeNode();

Sanitty source code | 195

// ==

//@{

// Overwrites the data portion of all inactive nodes.

// If the sanitizeActivetoo is passed active nodes except the

//.bootblock node are sanitized too. (I'm uncertain of its use.)

// The writes takes place in the device flash and is verified.

//

// @param sanitizeActivetoo:

// 0 will prevent active nodes to be sanitized

// !0 will also sanitize active nodes except the first .bootblock

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_sanitizeAll(int sanitizeActivetoo);

// ==

//@{

// Checks if a nv fsnode is with 0x00.

// And verifies.

//

// @param node The node to sanitize.

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_sanitizeNode(struct pcbench_nvfs_node* node);

// ==

//@{

// Writes the contents of the nv file chain to a file

// in hexdump style.

//

// @param file filename of output file

// @returns 0 if successful, -1 if there is a problem.

//@}

// ==

int pcbench_nvfs_dumpAllToFile(char* file);

#endif /* pcbench_INCLUDED*/

196 | Sanitty source code

Output listing 6-18: pcbench.c
/* Procurve bench mode utilities

 * Contains utility functions for controlling a HP procurve switch over

 * edomtset/bench terminal mode.

 * Author and copyright Magnus Larsson, magnus [at] stril.com

 * Written as part of master thesis project 2015 in Electrical Engineering from KTH.

 * This code is HIGHLY experimental and not very robust in terms of input checks.

 * No warranties given.

*/

#include <string.h> /* strstr */

#include <assert.h>

#include <stdlib.h> /* malloc, free*/

#include <time.h>

#include "pcbench.h"

#include "term.h"

#include "log.h"

#if defined(__linux__) || defined(__FreeBSD__)

#include <unistd.h> //sleep();

#else

#include <windows.h> //sleep();

#endif

//Public variables

static struct pcbench_model_info *pcbench_modelsDB[128] = { NULL };

//private variables

static unsigned char buf[term_READ_BUFFER_SIZE];

static struct pcbench_model_info *pcbench_currentModel=NULL;

static char pcbench_lastSMreadConfigCommand[256] = { '\0' }; //last edomtset sm mode
command sent

//private helper functions

void makeModelInfoDB();

int pcbench_enterBenchMode(int maxspeed) {

 int i;

 char* str;

 int len;

 //try to connect at max speed for 6 seconds

 term_changeSpeed(maxspeed);

 //find the maxspeed index

 for (i = 0; TERM_ALLOWED_SPEEDS[i] < maxspeed; i++);

 /*

 2 \r trigger baud sense

 wait 2 sec

Sanitty source code | 197

 1 \r to get by intro text

 */

 do {

 log_msgn_NULLTERM(LOG_INFO, "Trying to connect with speed ",
TERM_ALLOWED_SPEEDS_STR[i], NULL);

 term_changeSpeed(TERM_ALLOWED_SPEEDS[i]);

 term_send("\r\r");

 Sleep(2000);

 term_send("\r");

 len=term_read(buf);

 /*below code decodes the part# from the entry screen but it is unreliable

 so we get the part# by cmd option for now.

 char *needle = "ProCurve J";

 if (str = term_util_memmem(buf, OS_READ_BUFFER_SIZE, needle, strlen(needle)))
{

 str += strlen(needle) - 1;

 //found a model#

 if (strEnd = memchr(str, ' ', 32)){//search for end of part# space. Max 32
chars

 //the string is in buf memory which is not permanent. Need to copy it and
store in pcbench_modelStr.

 len = strEnd - str;

 pcbench_partnrStr = malloc(len+1);

 assert(pcbench_partnrStr);

 memcpy(pcbench_partnrStr, str, len);

 pcbench_partnrStr[len] = '\0';

 }

 }

 */

 str = "Please Enter Login Name:";

 if (term_util_memmem(buf, OS_READ_BUFFER_SIZE, str, strlen(str))) {

 log_error("Unit has password set. Password entry is not handled by this
tool."

 " Either remove passwords or do a factory reset");

 exit(EXIT_FAILURE);

 }

 if (memchr(buf, '#', len)) {

 goto connected; //enable mode

 }

 if (memchr(buf, '$', len)) {

 goto inBenchMode; //edomtset mode

 }

 if (memchr(buf, '=', len)) {

 goto inBenchMode; //bench jumper mode

 }

198 | Sanitty source code

 } while (--i > 0);

 log_error("Unable to connect to switch.");

 exit(EXIT_FAILURE);

connected:

 log_msgn_NULLTERM(LOG_INFO, "Connected with speed ", TERM_ALLOWED_SPEEDS_STR[i],
NULL);

 term_send("edomtset\r");

 term_send("edomtset\r");

 inBenchMode:

 log_info("Is now in bench mode");

 term_send("setterm ascii\r"); //use ascii to get rid of annoying vt100 codes

 //term_waitfor("$"); //could either be edomtset $ or bench mode jumper =>
promt

 Sleep(500);

 //term_sendCmd("no page", "$"); //terminal length 0

 term_send("no page\r");

 Sleep(500);

 /*Using single char prompts #, $, = is not robust in case they appear in
data.

 From now on we use the full (longer) edomtset prompt to verify command
completion.

 Ie, "ProCurve Switch 2610-48$" instead of just "$"

 */

 str = term_getPromptFromDevice();

 if (!str){

 log_error("could not decode prompt from device");

 exit(EXIT_FAILURE);

 }

 term_setPrompt(str);

 log_msg2(LOG_DEBUG, "Prompt set to: ", str);

 /*As far as I know the only way to get the part# and model# is entry banner
screen

 * Current edomtset point is the only stable point in the above process.

 * But we might be at this point when the switch was connected already in
edomtset mode and then we never passed the

 * login screen. We would eed to back out, active the banner screen, parse
the model# and then

 * simply redo the edomtset entry.

 * Todo: Never got the below to work properly, so the part# will be passed as
a cmd line option instead for now.

 */

 /*

Sanitty source code | 199

 if (!pcbench_partnrStr) {

 term_send("logout\n");

 Sleep(1000);

 // Do you want to log out[y / n] ?

 term_send("y");

 term_send(term_newline_str);

 Sleep(1000);

 //Do you want to save current configuration[y / n] ?

 term_send("n");

 term_send(term_newline_str);

 Sleep(1000);

 term_emptyReadBuffer();

 log_debug("reconnecting to get partnr string");

 pcbench_enterBenchMode(maxspeed); // do it all over again to catch the
main screen

 }

 pcbench_currentModel = pcbench_getModelInfo(pcbench_partnrStr);

 if (!pcbench_currentModel)

 {

 log_msgn_NULLTERM(LOG_ERROR, "pcbench_enterBenchMode: Unable to find
device ", pcbench_partnrStr, " in device database", NULL);

 return -1;

 }

 */

 return 0; //success

 }

int pcbench_memReadBytes(unsigned long address, size_t bytes, char* bindest) {

 int readchunk = 0;

 char cmd[128];

 int len;

 size_t readcount=0;

 while (bytes) {

 if (bytes > 256)

 readchunk = 256;

 else

 readchunk = bytes;

 if (sprintf(cmd, "sm -l%u -ab -db", readchunk) < 0) { //setup of the hex dump
output format including the read length

 log_msgn_NULLTERM(LOG_ERROR, "pcbench_memReadBytes: Could not generate smode
string: ", cmd, NULL);

 return -1;

 }

200 | Sanitty source code

 pcbench_send_SMconfigSetup(cmd);

 if (sprintf(cmd, "read 0x%08x", address) < 0) {

 log_msgn_NULLTERM(LOG_ERROR, "pcbench_memReadBytes: Could not generate read
address string: ", cmd, NULL);

 return -1;

 }

 len = term_sendCmdGetRes(cmd, NULL, buf);

 buf[len] = '\0'; // null terminate

 if (term_util_hexdump2bytes(buf, bindest) != readchunk) {

 log_error("pcbench_memReadBytes read error");

 return -1;

 }

 readcount += readchunk;

 bindest += readchunk;

 bytes -= readchunk;

 address += readchunk;

 if (!(readcount % (256 * 256)))

 log_debug("64kB block fetched.");

 }

 return readcount;

}

int pcbench_memDumpToFile(unsigned long address, size_t bytes, FILE* fd) {

 const unsigned int READBLOCK = 10 * 1024; //10kB readblocks

 char *rbuf = malloc(READBLOCK);

 size_t left = bytes;

 size_t read = 0;

 int ret;

 char msg[256];

 int toRead;

 time_t tStart;

 time_t tEnd;

 double durSec;

 while (left>0) {

 if (left > READBLOCK)

 toRead = READBLOCK;

 else

 toRead = left;

 tStart= time(NULL);

 ret = pcbench_memReadBytes(address, toRead, rbuf);

 if (ret != toRead) {

 free(rbuf);

 return -1;

 }

 left -= ret;

Sanitty source code | 201

 read += ret;

 address += ret;

 ret = fwrite(rbuf, sizeof(char), toRead, fd);

 if (ret != toRead) {

 free(rbuf);

 return -1;

 }

 tEnd=time(NULL);

 durSec = difftime(tEnd, tStart);

 printf("\r%u%% complete. Transfer rate: %.0f bytes/sec", read * 100 / bytes,
((double)toRead)/durSec);

 }

 free(rbuf);

 return 0;

}

int pcbench_memWriteByte(unsigned long address, unsigned char b) {

 char cmd[128];

 //setup byte access

 pcbench_send_SMconfigSetup("sm -b");

 if (sprintf(cmd, "wr 0x%08x 0x%02x", address, b) < 0) {

 log_msgn_NULLTERM(LOG_ERROR, "pcbench_memWriteByte: Could not generate wr
command string: ", cmd, NULL);

 return -1;

 }

 if (term_sendCmd(cmd, NULL))

 return -1;

 return 0; //sucess

}

int pcbench_memWriteByteFlash(unsigned long address, unsigned char byte) {

 /*

 if (address >= pcbench_currentModel->flashBaseAddress &&

 address < pcbench_currentModel->flashBaseAddress + pcbench_currentModel-
>flashSize)

 _*/

 //writes must be prepended by the flash unlock sequence

 for (int i = 0; i < pcbench_currentModel->flashProgramUnlockSeqLength; i++) {

 unsigned long a = pcbench_currentModel->flashProgramUnlockSeqAddr[i] +
pcbench_currentModel->flashBaseAddress;

 unsigned char b = pcbench_currentModel->flashProgramUnlockSeqData[i];

 if (pcbench_memWriteByte(a, b)) {

 return -1;

202 | Sanitty source code

 }

 }

 /*

 The flash should now be unlocked and can be written. We are writing a byte but it
seems some flash chips will write a whole word.

 As such we might overwrite the next byte too by 0x00 accidently.

 */

 if (pcbench_memWriteByte(address, byte)) {

 return -1;

 }

 return 0; // success

}

unsigned long pcbench_nvfs_getFirstNodeAddr() {

 char* addr;

 char* addr_end;

 switch (term_sendCmdGetRes("fs nvfswalk", NULL, buf)){

 case term_err_NO_CMD_ECHO:

 log_error("pcbench_nvfs_getFirstNodeAddr(): fs nvfswalk command not found in
echo stream");

 return 0;

 case term_err_TIMEOUT:

 log_error("pcbench_nvfs_getFirstNodeAddr(): fs nvfswalk command generated
timout");

 return 0;

 case term_err_BUFFER_OVERFLOW:

 log_error("pcbench_nvfs_getFirstNodeAddr(): fs nvfswalk command generated
buffer overrrun");

 return 0;

 }

 buf[term_READ_BUFFER_SIZE-1] = '\0'; // null terminate to make string searches
safe

 //the first address should be the .bootblock

 addr = strstr(buf, "0x");

 if (!addr)

 return 0;

 addr_end=strchr(addr, ' ');

 if (!addr_end)

 return 0;

 *addr_end= '\0'; //null terminate to make addr a string

 return strtoul(addr, NULL, 16); //convert from hex to unsigned long

}

struct pcbench_nvfs_node* pcbench_nvfs_fetchNode(unsigned long addr) {

 unsigned char* headmem;

Sanitty source code | 203

 struct pcbench_nvfs_node* node;

 int i;

 /*Mapping the struct directly could be risky. Even thoug pragma pack could be
used

 different endian CPU settings could mess upp the integers. Safer to decode them
manually.

 pcbench_nvfs_fetchNode() returnes a malloc:ed data so we can reference inside it
permanently.

 */

 headmem = malloc(pcbench_nvfs_node_HEADERSIZE);

 assert(headmem);

 //fetch the header (32bytes)

 if (pcbench_memReadBytes(addr, pcbench_nvfs_node_HEADERSIZE, headmem) !=
pcbench_nvfs_node_HEADERSIZE)

 return NULL;

 /*

 The first 16 bytes should contain a null terminated filename string.

 */

 for (i = 0; i <= 16 && headmem[i] != '\0'; i++);

 if (i == 16) {

 //no NULL in the first 16 bytes

 free (headmem);

 return NULL; //fail

 }

 node = malloc(sizeof(struct pcbench_nvfs_node));

 assert(node);

 //remember the address of this node

 node->_nodeAddress = addr;

 //keep null terminated string

 node->fname = headmem;

 //datasize is 4 bytes mapped least significant byte first

 node->datasize = (headmem[16] << 24) + (headmem[17] << 16) + (headmem[18] << 8) +
headmem[19];

 //I don't know the meaning of the 4byte date field so just keep it byte ordered
for now

 node->date[0] = headmem[20];

 node->date[1] = headmem[21];

 node->date[2] = headmem[22];

 node->date[3] = headmem[23];

 //4 byte nextpointer mapped least significant byte first

 node->nextp = (headmem[24] << 24) + (headmem[25] << 16) + (headmem[26] << 8) +
headmem[27];

204 | Sanitty source code

 node->activeflag[0] = headmem[28];

 node->activeflag[1] = headmem[29];

 //unknown meaning, just copy as is

 node->flags = (headmem[30]<<8) + headmem[31];

 //from the header we can get the data size and malloc enough RAM for the whole
node

 //But first make some sanity checks.

 if (node->datasize > 10000000) {

 log_error("pcbench_nvfs_fetchNode: Sanity check failed. Data size to big");

 return NULL;

 }

 node->data = malloc(node->datasize);

 assert(node->data);

 //copy the data from the switch

 if (pcbench_memReadBytes(addr+32, node->datasize, node->data) != node->datasize)

 return NULL;

 return node;

}

int pcbench_flashDumpToFile(char* file){

 FILE *f;

 //check if file already exists

 if (f = fopen(file, "r")) {

 fclose(f);

 log_msgn_NULLTERM(LOG_ERROR, "File already exists. Could not open ", file ,
NULL);

 return -1;

 }

 if (!(f = fopen(file, "wb"))) { //b for binary to prevent EOL conversion
 log_msgn_NULLTERM(LOG_ERROR, "Could not open file with r/w access: ",file, NULL);

 return -1;

 }

 if (!pcbench_currentModel)

 return -1;

 if (pcbench_memDumpToFile(pcbench_currentModel->flashBaseAddress,
pcbench_currentModel->flashSize, f))

 return -1;

 fclose(f);

 return 0;

}

Sanitty source code | 205

int pcbench_nvfs_isActiveNode(struct pcbench_nvfs_node *node){

 assert(node);

 return (node->activeflag[1] & 0xff);

}

int pcbench_nvfs_isLastNode(struct pcbench_nvfs_node* node) {

 return (node->nextp == 0xffffffff);

}

int pcbench_nvfs_isSanitized(struct pcbench_nvfs_node* node){

 unsigned long i;

 for (i=0; i < node->datasize; i++) {

 if (node->data[i] != 0x00){

 return 0;

 }

 }

 return 1;

}

struct pcbench_model_info *pcbench_getModelInfo(char* modelStr){

 if (!pcbench_modelsDB[0])

 makeModelInfoDB();

 for (int i = 0; pcbench_modelsDB[i]; i++)

 if (!strcmp(pcbench_modelsDB[i]->partnr, modelStr))

 return pcbench_modelsDB[i];

 return NULL;

}

void pcbench_setCurrentModel(struct pcbench_model_info *mod) {

 pcbench_currentModel = mod;

}

struct pcbench_model_info *pcbench_getCurrentModel() {

 return pcbench_currentModel;

}

struct pcbench_model_info **pcbench_getModelDB() {

 if (!pcbench_modelsDB[0])

 makeModelInfoDB();

 return pcbench_modelsDB;

}

void makeModelInfoDB(){

 static struct pcbench_model_info J9088A = {

 .systemName = "ProCurve Switch 2610 - 48",

 .name = "ProCurve Switch 2610 - 48",

 .partnr = "J9088A",

206 | Sanitty source code

 .flashBaseAddress = (unsigned long) 0xbc000000,

 .flashSize = 0x1000000, //16MB

 .flashChipName = "S29GL128P",

 .flashProgramUnlockSeqAddr = { (unsigned long)0xaaa, (unsigned long)0x555,
(unsigned long)0xaaa },

 .flashProgramUnlockSeqData = { (unsigned char)0xaa, (unsigned char)0x55,
(unsigned char)0xA0 },

 .flashProgramUnlockSeqLength = 3

 };

 static struct pcbench_model_info J4900A = {

 .systemName = "ProCurve Switch 2626",

 .name = "ProCurve Switch 2626",

 .partnr = "J4900A",

 .flashBaseAddress = (unsigned long)0x7c800000,

 .flashSize = 0x00800000, //8MB

 .flashChipName = "AM29LV065D",

 //any address in this chip can be written to for the unlock sequence. Only data
sequence matters.

 //Let's use the base address.

 .flashProgramUnlockSeqAddr = { (unsigned long)0x0, (unsigned long)0x0, (unsigned
long)0x0 },

 .flashProgramUnlockSeqData = { (unsigned char)0xaa, (unsigned char)0x55,
(unsigned char)0xA0 },

 .flashProgramUnlockSeqLength = 3

 };

 pcbench_modelsDB[0] = &J9088A;

 pcbench_modelsDB[1] = &J4900A;

 pcbench_modelsDB[2] = NULL; //null stopper

}

pcbench_send_SMconfigSetup(char* cmd) {

 if (strcmp(cmd, pcbench_lastSMreadConfigCommand)) {

 term_sendCmd(cmd, NULL);

 strncpy(pcbench_lastSMreadConfigCommand, cmd,
sizeof(pcbench_lastSMreadConfigCommand));

 }

}

int pcbench_nvfs_sanitizeNode(struct pcbench_nvfs_node* node) {

 struct pcbench_nvfs_node* node2;

 char msg[256];

 char *ghostStr="";

 if (!pcbench_nvfs_isActiveNode(node))

 ghostStr = "ghost";

 sprintf(msg, "Sanitizing: %snode at 0x%x: %s, %u bytes", ghostStr, node-
>_nodeAddress, node->fname, node->datasize);

 log_info(msg);

Sanitty source code | 207

 time_t tStart = time(&tStart);

 time_t tEnd;

 double durSec;

 if (pcbench_nvfs_isSanitized(node)){

 //already santizied (as long as the local node is synced to the node on flash
)

 log_info(" Already sanitized");

 return 0;

 }

 unsigned long a = node->_nodeAddress + pcbench_nvfs_node_HEADERSIZE;

 for (unsigned int i = 0; i < node->datasize; i++) {

 if (pcbench_memWriteByteFlash(a+i, (unsigned char) 0x00)) {

 return -1;

 }

 printf("\r%u%% complete", i * 100 / node->datasize);

 }

 printf("\r100%% complete\nVerification... ");

 node2 = pcbench_nvfs_fetchNode(node->_nodeAddress); //refetch the (hopefully)
sanitized node

 //todo: free node and fields

 node = node2;

 if (pcbench_nvfs_isSanitized(node)) {

 printf(" OK\n");

 time(&tEnd);

 durSec = difftime(tEnd, tStart);

 sprintf(msg, "Sanitized Node at 0x%x took %5.1f seconds, %5.1fbytes/sec",
node->_nodeAddress, durSec, node->datasize/durSec);

 log_info(msg);

 return 0; //sucesss

}

 else{

 printf(" FAILED!!!");

 return 1; //failed

 }

}

int pcbench_nvfs_sanitizeAll(int sanitizeActivetoo) {

 unsigned long addr;

 struct pcbench_nvfs_node *node;

 addr = pcbench_nvfs_getFirstNodeAddr();

 node = pcbench_nvfs_fetchNode(addr); //get the first .bootblock node

 while (node->nextp != 0xffffffff) {

 node = pcbench_nvfs_fetchNode(node->nextp); // fetch next

 if (node == NULL) return -1;

208 | Sanitty source code

 if (pcbench_nvfs_isActiveNode(node) && !sanitizeActivetoo) {

 continue;

 }

 if (pcbench_nvfs_sanitizeNode(node))

 return -1;

 }

 return 0;

}

int pcbench_nvfs_dumpAllToFile(char* file){

 FILE *f;

 char cmd[128];

 int len;

 char *str;

 long leftToRead = 0;

 long toRead;

 unsigned long addr;

 struct pcbench_nvfs_node *node;

 char *DELIM =
"==\n";

 //check if file already exists

 if (f = fopen(file, "r")) {

 fclose(f);

 log_msgn_NULLTERM(LOG_ERROR, "File already exists. Could not open ", file,
NULL);

 return -1;

 }

 if (!(f = fopen(file, "w"))) {

 log_msgn_NULLTERM(LOG_ERROR, "Could not open file with r/w access: ", file,
NULL);

 return -1;

 }

 addr = pcbench_nvfs_getFirstNodeAddr();

 node = pcbench_nvfs_fetchNode(addr); //get the first .bootblock node

 if (node == NULL) {

 log_error("pcbench_nvfs_dumpAllToFile(): Could not fetch boot block");

 return -1;

 }

 while(1){

 fprintf(f, DELIM);

 fprintf(f, "NODE INFO\n");

 fprintf(f, "Filename: %s\n", node->fname);

 fprintf(f, "Address: 0x%08x\n", node->_nodeAddress);

 if (pcbench_nvfs_isActiveNode(node))

 str = "Yes";

Sanitty source code | 209

 else

 str = "No";

 fprintf(f, "Is Active?: %s\n", str);

 fprintf(f, "Next node address: 0x%08x\n", node->nextp);

 fprintf(f, "Date: 0x%02x 0x%02x 0x%02x 0x%02x\n", node->date[0],
node->date[1], node->date[2], node->date[3]);

 fprintf(f, "Active flags: 0x%02x 0x%02x\n", node->activeflag[0], node-
>activeflag[1]);

 fprintf(f, "Size [bytes]: %u\n", node->datasize);

 fprintf(f, "Data, first 32bytes are header, next bytes are data:\n");

 //write the data portion

 leftToRead = node->datasize + 32; //header + data

 addr = node->_nodeAddress;

 while (leftToRead>0){

 /*Setup the switch to read/display 256 or 16bytes (one row) hexdump style.

 It is practical since the nv filesystem is 16byte aligned.

 pcbench_nvfs_fetchNode modifie s this so it has to be called before

 each node data is dumped.

 */

 if (leftToRead >= 256) {

 toRead = 256;

 pcbench_send_SMconfigSetup("sm -l256 -ab -db");

 }

 else{

 toRead = 16;

 pcbench_send_SMconfigSetup("sm -l16 -ab -db");

 }

 if (sprintf(cmd, "read 0x%08x", addr) < 0) {

 log_msgn_NULLTERM(LOG_ERROR, "pcbench_nvfs_dumpAllToFile: Could not
generate read address string: ", cmd, NULL);

 return -1;

 }

 len = term_sendCmdGetRes(cmd, NULL, buf);

 buf[len] = '\0'; // null terminate

 if (len <= 0) {

 log_error("pcbench_nvfs_dumpAllToFile: read error");

 return -1;

 }

 if (len != fwrite(buf, sizeof(char), len, f)){

 log_error("pcbench_nvfs_dumpAllToFile: write error");

 return -1;

 }

 leftToRead -= toRead;

210 | Sanitty source code

 addr += toRead;

 } //end for each hexdump line

 if (pcbench_nvfs_isActiveNode(node))

 log_msgn_NULLTERM(LOG_INFO, "Node successfully fetched: ", node->fname,
NULL);

 else

 log_msgn_NULLTERM(LOG_INFO, "Ghost Node successfully fetched: ", node-
>fname, NULL);

 if (pcbench_nvfs_isLastNode(node))

 break; //break out of the for-each-node loop

 node = pcbench_nvfs_fetchNode(node->nextp); // fetch next node

 if (node == NULL) return -1;

 }// end for each node

 fprintf(f, DELIM);

 return 0;

}

Sanitty source code | 211

Output listing 6-19: sanitty_pc.c
/*

* Command line application for inspecting and sanitizing HP Procurve flash.

* Especially the NV filesystem storing configurations.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#include <stdio.h>

#include <stdlib.h> //atoi, atexit

#include <string.h> //strchr

#include "log.h"

#include "term.h"

#include "rs232.h"

#include "pcbench.h"

struct option {

 char *name;

 char *strValue;

};

void static printHelp();

void static processOptions(int argc, char *argv[]);

struct option parseOption(char* str);

static void processCommand();

void exitCleanup(void);

void tests();

void test_rx();

//optionVariables settable form the command line

int comPortOpt = 0;

int maxSpeedOpt=115200;

char modeOpt[] = { '8', 'N', '1', 0 };

FILE* termlogFile;

static char** cmd; //commands to execute

unsigned char buf[term_READ_BUFFER_SIZE];

int main(int argc, char *argv[])

{

 atexit(exitCleanup); //register the cleanup routine

 log_setFilterLevel(LOG_DEBUG);

 log_debug("Sanitty started");

 processOptions(argc, argv);

212 | Sanitty source code

 //handle unknown model error

 if (!pcbench_getCurrentModel()) {

 //display which options are supported.

 printf("ERROR: Missing mandatory option: -device = { part# } \nThese part# are
currently supported:\n");

 struct pcbench_model_info **modDB = pcbench_getModelDB();

 int i = 0;

 while (modDB[i]){

 printf(modDB[i]->partnr);

 printf("\n");

 i++;

 }

 printHelp();

 exit(EXIT_FAILURE);

 }

 /*

 * It seems optimal lineDelim should be \r on commamnds sent to the switch and
\r\n for data returned.

 * But term_xxx doesn't make difference of the rx and tx new line strings so we
will go for the deafult for now.

 */

 //term_setLineDelim("\r");

 term_setTimeout(10000);

 if(term_open(comPortOpt, maxSpeedOpt, modeOpt))

 {

 log_error("Can not open comport");

 exit(EXIT_FAILURE);

 }

 if (pcbench_enterBenchMode(maxSpeedOpt)) {

 log_error("Could not enter bench mode on the switch.");

 exit(EXIT_FAILURE);

 }

// tests();

 processCommand();

 printf("Press [Enter] to exit . . .");

 fflush(stdout);

 getchar();

 return 0;

}

void printHelp() {

 printf("Usage: sanitty_pc --option1=value --option2 command \n\n"

 "Options: (may be prepended by - or --) \n"

Sanitty source code | 213

 " -loglevel= {debug, info, error} default:info\n"

 " -port= { 0, 1, 2 ... } com port to use, default: 0\n" //windows

 " -maxspeed= {110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,
115200} default: 115200\n"

 " -termlog=[path to RS232 input log file]\n"

 "Mandatory option:\n"

 " -device={part#} example -device=J9088A\n"

 "\nCommands:\n"

 " sanitize Writes 0x00 to all unactive nv file records\n"

 " dumpflash [filename] Dumps the contents of the flash chip\n"

 " dumpnvfs [filename] Writes a list of the nv file records with contents to
a file\n"

 "\n***\n"

 "IMPORTANT: This tool is highly experimental and may make your switch unusable
and invalidate your warranty.\n"

 "It is supplied AS IS without any warranties. Copyright Magnus Larsson 2015.
magnus"

 "@stril.com\n"

 "***\n"

 "\n");

}

void processOptions(int argc, char *argv[]){

 ////debug

 //for (int i = 0; i < argc; i++)

 //log_debug(argv[i]);

 for (int i = 1; i < argc; i++) {

 struct option opt;

 char* str;

 opt = parseOption(argv[i]);

 if (!opt.name) {

 //end of options. the rest are commands.

 cmd = &argv[i];

 break;

 }

 str = "loglevel";

 if (!strcmp(str, opt.name)) {

 if (!strcmp(opt.strValue, "debug"))

 log_setFilterLevel(LOG_DEBUG);

 else if (!strcmp(opt.strValue, "info"))

 log_setFilterLevel(LOG_INFO);

 else if (!strcmp(opt.strValue, "error"))

 log_setFilterLevel(LOG_ERROR);

 else {

 log_msg2(LOG_ERROR, "Unknown loglevel option value: ", opt.strValue);

214 | Sanitty source code

 printHelp();

 exit(EXIT_FAILURE);

 }

 continue;

 }

 str = "maxspeed";

 if (!strcmp(str, opt.name)) {

 maxSpeedOpt = atoi(opt.strValue);

 continue;

 }

 str = "port";

 if (!strcmp(str, opt.name)) {

 comPortOpt = atoi(opt.strValue);

 continue;

 }

 //this will be a cmd line option until a safe way of autodetec from the CLI is
found.

 str = "device";

 if (!strcmp(str, opt.name)) {

 //a device option is passed. Try to get its infoDB

 struct pcbench_model_info* modelInfo = pcbench_getModelInfo(opt.strValue);

 if (modelInfo) {

 pcbench_setCurrentModel(modelInfo);

 }

 }

 str = "termlog";

 if (!strcmp(str, opt.name)) {

 //check if file already exists

 FILE *f;

 if (f=fopen(opt.strValue, "r")) {

 fclose(f);

 log_msgn_NULLTERM(LOG_ERROR, "Could not open termLog. File already
exists: ", opt.strValue, NULL);

 exit(EXIT_FAILURE);

 }

 if (! (f = fopen(opt.strValue, "w"))) {

 log_msgn_NULLTERM(LOG_ERROR, "Could not open term with r/w access: ",
opt.strValue, NULL);

 exit(EXIT_FAILURE);

 }

 log_msgn_NULLTERM(LOG_INFO, "termlog opened: ", opt.strValue, NULL);

 termlogFile = f;

 term_setTermLog(f);

 } // option inlog

Sanitty source code | 215

 } // for each option

}

// ==

//@{

// Parses an option. Eg -param=value returns a struct of {param, value}

//

// @param str Option string to parse

// @returns optionstruct on success. Option struct with NULL fields on error.

//@}

// ==

struct option parseOption(char* str) {

 log_msgn_NULLTERM(LOG_DEBUG, "parsing command: ", str, NULL);

 struct option opt = { 0, 0 };

 if (str[0] != '-') {

 return opt; //not an option, return opt with null fields

 }

 str++;

 if (str[0] == '-')

 str++; //skip second -

 opt.name = str;

 if (opt.strValue = strchr(str, '=')) {

 opt.strValue[0] = 0;

 opt.strValue++;

 }

 log_msgn_NULLTERM(LOG_DEBUG, "Option ", opt.name, " found, value: ",
opt.strValue, NULL);

 return opt;

}

static void processCommand(){

 char *str;

 char* filename;

 str = "sanitize";

 if (!strcmp(str, cmd[0])) {

 int sanitizeActivetoo = 0;

 if (pcbench_nvfs_sanitizeAll(sanitizeActivetoo)) {

 log_error("Failed to sanitize NV file system.");

 exit(EXIT_FAILURE);

 }

 else {

 log_info("Successfully sanitized NV file system.");

216 | Sanitty source code

 return;

 }

 }

 str = "dumpflash";

 if (!strcmp(str, cmd[0])) {

 filename = cmd[1];

 if (!filename){

 log_msgn_NULLTERM(LOG_ERROR, "Output file missing", filename, NULL);

 exit(EXIT_FAILURE);

 }

 log_msgn_NULLTERM(LOG_INFO, "Dumping flash to file: ", filename, NULL);

 if (pcbench_flashDumpToFile(filename)) {

 log_msgn_NULLTERM(LOG_ERROR, "\nFailed to dump flash to file: ", filename,
NULL);

 exit(EXIT_FAILURE);

 }

 else {

 log_msgn_NULLTERM(LOG_INFO, "\nSuccessfully dumped flash to file: ",
filename, NULL);

 return;

 }

 }

 str = "dumpnvfs";

 if (!strcmp(str, cmd[0])) {

 filename = cmd[1];

 if (!filename){

 log_msgn_NULLTERM(LOG_ERROR, "Output file missing", filename, NULL);

 exit(EXIT_FAILURE);

 }

 log_msgn_NULLTERM(LOG_INFO, "Writing NV fs contents to file: ", filename,
NULL);

 if (pcbench_nvfs_dumpAllToFile(filename)) {

 log_msgn_NULLTERM(LOG_ERROR, "Failed to write NV fs contents to file: ",
filename, NULL);

 exit(EXIT_FAILURE);

 }

 else {

 log_msgn_NULLTERM(LOG_INFO, "Successfully wrote NV fs contents to file: ",
filename, NULL);

 return;

 }

 }

 if (cmd[0])

 log_msgn_NULLTERM(LOG_ERROR, "Unknown command:", cmd[0], NULL);

 else

 log_msgn_NULLTERM(LOG_ERROR, "Command missing.", NULL);

 printHelp();

}

Sanitty source code | 217

void exitCleanup(void) {

 //close any open file descriptors

 if (termlogFile)

 fclose(termlogFile);

}

void tests() {

 //some test cases

 log_msgn_NULLTERM(LOG_ERROR, "!!!!!!!!!!!!!!!!!!!TESTS!!!!!!!!!!!!!!!!!!!!",
NULL);

 //test a write

 unsigned long addr;

 addr = 0x7cf20ee4;

 pcbench_memReadBytes(addr, 4, buf);

 pcbench_memWriteByteFlash(addr, 0x00);

 pcbench_nvfs_dumpAllToFile("c:\\tmp\\nvfsdump.txt");

 pcbench_flashDumpToFile("c:\\tmp\\flash.bin");

 pcbench_nvfs_sanitizeAll(0);

 addr=pcbench_nvfs_getFirstNodeAddr();

 struct pcbench_nvfs_node *node = pcbench_nvfs_fetchNode(addr);

 int read = pcbench_memReadBytes(0xbcee0000, 1000000, buf);

}

218 | Sanitty source code

Output listing 6-20: log.h
/*

* Contains logging utility system.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#ifndef LOG_H

#define LOG_H

#include <stdio.h> // FILE descriptor

//Severity levels

#define LOG_DEBUG 1

#define LOG_INFO 2

#define LOG_ERROR 3

//Set the level at which messages are currently displayed. Less severe messages are
discarded.

void log_setFilterLevel(int level);

void log_msg(int severity, char* message);

void log_msg2(int severity, char* m1, char* m2);

void log_msg3(int severity, char* m1, char* m2, char* m3);

void log_msgarray(int severity, char* msgArr[]);

void log_msgn_NULLTERM(int severity, ...);

//log with LOG_INFO severity

void log_info(char* message);

//log with LOG_debug severity

void log_debug(char* message);

//log with LOG_error severity

void log_error(char* message);

// Filedescriptor to write log entries to. Default is 2 (stderr)

void setOutputFile(FILE* fd);

#endif /* LOG_H */

Sanitty source code | 219

Output listing 6-21: log.c
/*

* Contains logging utility system.

* Author and copyright Magnus Larsson, magnus [at] stril.com

* Written as part of master thesis project 2015 in Electrical Engineering from KTH.

* This code is HIGHLY experimental and not very robust in terms of input checks.

* No warranties given.

*/

#include "log.h"

#include <time.h>

#include <stdio.h>

#include <string.h>

#include <stdarg.h> //for log_msgn variable arguments

#include <assert.h>

#include <stdlib.h> //malloc

//file desriptor to write to. stderr by default.

static FILE *file;

//Level at which messages are currently displayed. Less severe messages are
discarded.

static int filterLevel = LOG_INFO;

//include time

static int includeTime = 1;

void log_msgn_NULLTERM(int severity, ...) {

 int len;

 va_list ap;

 char* msg;

 char* str;

 va_start(ap, severity);

 msg = malloc(1024);

 assert(msg);

 msg[0] = '\0'; //empty string

 str = va_arg(ap, char*);

 while (str) {

 if (str[0] == '\n')

 break;

 msg = realloc(msg, strlen(msg) + strlen(str) + 1);

 assert(msg);

 sprintf(msg, "%s%s", msg, str); //concatenate

 str = va_arg(ap, char*);

 }

 va_end(ap);

220 | Sanitty source code

 log_msg(severity, msg);

}

void log_msg(int severity, char* message){

 if (severity < filterLevel)

 return;

 FILE *f=file;

 if (!f)

 f = stderr; //log to stderr by default

 char* sevPrefix="?";

 switch (severity) {

 case LOG_DEBUG: sevPrefix = "Debug:"; break;

 case LOG_INFO: sevPrefix = "Info: "; break;

 case LOG_ERROR: sevPrefix = "Error:"; break;

 }

 fprintf(f, "%s ", sevPrefix);

 if (includeTime) {

 time_t now;

 char* strTime;

 time(&now);

 strTime = ctime(&now); // www dd hh:mm:ss yyyy

 //just select the hh:mm:ss

 strTime += 11;

 strTime[8] = 0;

 fprintf(f, "%s ", strTime);

 }

 fprintf(f, "%s\n", message);

}

void log_msg2(int severity, char* m1, char* m2){

 char* str;

 str = malloc(strlen(m1) + strlen(m2) + 1);

 assert(str);

 sprintf(str, "%s%s", m1, m2); //concatenate

 log_msg(severity, str);

 free(str);

}

void log_msg3(int severity, char* m1, char* m2, char* m3){

 char* str;

 str = malloc(strlen(m1) + strlen(m2) + strlen(m3) + 1);

Sanitty source code | 221

 assert(str);

 sprintf(str, "%s%s%s", m1, m2, m3); //concatenate

 log_msg(severity, str);

 free(str);

}

void log_msgarray(int severity, char* msgArr[]){

// char* str;

 //int len=0;

 //

 //str = malloc(strlen(m1) + strlen(m2) + strlen(m3) + 1);

 //assert(str);

 //sprintf(str, "%s%s%s", m1, m2, m3); //concatenate

 //log_msg(severity, str);

 //free(str);

}

//log with LOG_DEBUG severity

void log_debug(char* message) {

 log_msg(LOG_DEBUG, message);

}

//log with LOG_INFO severity

void log_info(char* message) {

 log_msg(LOG_INFO, message);

}

//log with LOG_ERROR severity

void log_error(char* message) {

 log_msg(LOG_ERROR, message);

}

// Filedescriptor to write log entries to. Default is 2 (stderr)

void setOutputFile(FILE* fd) {

 file = fd;

}

//Set the new filter level

void log_setFilterLevel(int newlevel){

 filterLevel = newlevel;

}

//Set includeTime, 0=disable, 1=enable

void setIncludeTime(int b){

 includeTime = b;

}

222 | Independence of data when searching for markers

Appendix I. Independence of data when searching for markers

Does the probability of finding a random marker in a data string by accident depend on how the data
looks? In the previous Section 3.2 I stated: “A random marker of a single byte has the probability 2-8
to match any other byte regardless of probability distribution”

Is this really true? Should not the probability of finding a marker by accident depend on the data it is
injected into? In this section we will see that if the markers are created from random symbols, it is
possible to calculate an upper limit for the risk of finding them in any data, regardless what the data
may look like.

Let us study this in steps by looking at a generic single data and marker symbol and investigate the
probability of them matching.

Figure
6-2: Data and ma

Let D
be a
symb

ol in the data string having any of the d symbol values from the alphabet {𝑑1,𝑑2, … ,𝑑𝑑}.

Let M be a symbol in the marker string having any of the m symbol values from the alphabet
{𝑚1,𝑚2, … ,𝑚𝑚}

Let M’s alphabet be a subset of D’s alphabet. Or differently said: Every symbol value in M’s alphabet
exists in D’s alphabet. But a symbol value of D’s alphabet may not necessarily exist in M’s alphabet.

Example of the above notation: character marker in full byte data

D can be any of the 255 values of byte. d=255.

M can be any of the 52 values of the byte which are characters. m=52

Every character M can have will also be possible to find in D

But every value D can have will not be in M’s alphabet (i.e. the non characters)

D and M can be considered as discrete random (stochastic) variables. Since we generate each marker’s
symbol value random between the values in its alphabet we can write the probability distribution as:

Equation 6-1

𝑃𝑃(𝑀 = 𝑑𝑥) = �
1
𝑚

 𝑤ℎ𝑒𝑒 𝑑𝑥 𝑖𝑖 𝑎 𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑡ℎ𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎 (ℎ𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑔𝑔ℎ 𝑚).

0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

We are now interested to write the probability of a symbol match between M and D:

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑀 = 𝐷)

We can build a complete probability matrix for all combinations of M and D and their probability
“mass”. It will be a square [d x d] matrix and the diagonal is the interesting part as those cells
represent probability “mass” of a match. Example: The first cell contains the probability of both M and
D to both have the value d1 and is Prob(M= d1 & D= d1).

 ���

 �������������

Data: D ? ? ? ? ? ? ? ? ? ? ? … ? ? ? ? ? ? ? ? ? ? ? ?

D bytes

Marker: M X X X X X

L bytes

Independence of data when searching for markers | 223

Figure 6-3: Full state table over the probabilities of a marker and data symbol match

 M=d1 M=d2 … M=dd

D=d1 p(M=d1 & D=d1)

D=d2 p(M=d2 & D=d2)

… …

D=dd p(M=dd & D=dd)

Since our marker symbols are generated random and thus are independent from the data symbols
we can write the probability as the product of the separate independent probabilities [68p. 413] =
Prob(M=dx & D=dx)=Prob(M= dx) * Prob(D= dx)

We can now express the probability-mass in the diagonal as:
Equation 6-2

 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜 𝑚𝑚𝑚𝑚ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠 𝑀 𝑎𝑎𝑎 𝐷 = 𝑃𝑃(𝑀 = 𝐷) = �𝑃𝑃(𝑀 = 𝑑𝑥) ∗ 𝑃𝑃(𝐷 = 𝑑𝑥)
𝑑

 𝑥=1

The first factor in the above equation, 𝑃𝑃(𝑀 = 𝑑𝑥), is the probability distribution of our marker
symbols which we know (Equation 6-1). As it is 1/m for all dx belonging to the alphabet of M and zero
otherwise we only need to perform the sum over the alphabet of M:

𝑃𝑃(𝑀 = 𝐷) = �𝑃𝑟(𝑀 = 𝑑𝑥) ∗ 𝑃𝑃(𝐷 = 𝑑𝑥) =
1
𝑚
�𝑃𝑃(𝐷 = 𝑑𝑥) =
𝑚

 𝑥=1

𝑚

 𝑥=1

The probability distribution of the data symbols is unknown but we know that if the marker and
symbol alphabets are equal (m = d , such as for MAC address markers) we are performing the sum over
the whole probability space which is equal to 1:

Equation 6-3

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜 𝑎 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑀) 𝑚𝑚𝑚𝑚ℎ 𝑎 𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 (𝐷).

𝑀 𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑡ℎ𝑒 𝑣𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑟 𝑜𝑜 𝐷.
d=the number of 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣 𝑀 𝑎𝑎𝑎 𝐷 𝑐𝑐𝑐 𝑡𝑡𝑡𝑡

=
1
𝑑
�𝑃𝑃(𝐷 = 𝑑𝑥)
𝑑

𝑥=1
�����������

=1

=
𝟏
𝒅

If marker and data symbols do not share alphabet such as the example with character markers in
generic byte data we can not calculate the sum exactly because we don’t know the probability
distribution of the data symbol values that happen to match the marker symbols. However we know
that the sum over a subset of the probability mass function of D can never be more than 1. Therefore
we can write:

Equation 6-4

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑀) 𝑚𝑚𝑚𝑚ℎ 𝑖𝑖 𝑑𝑑𝑑𝑑 (𝐷)
𝑊ℎ𝑒𝑒𝑒 𝑀 𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑚 𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝐷 𝑎𝑎𝑎 𝑡ℎ𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑜𝑜 𝑡ℎ𝑒𝑒𝑒 𝑚 𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 𝑀.
=

1
𝑚
�𝑃𝑃(𝐷 = 𝑚𝑥)
𝑚

𝑥=1
�����������

≤1

≤
1
𝑚

224 | Independence of data when searching for markers

This is good enough because we do not actually need to calculate the exact risk of a marker should
appear by random in the data. All we need is an upper limit. We want to be able to state something like
“the probability of finding this password string in unknown data by accident, is LESS than or equal to
0.001%”. If it is less, it is just good because it makes the marker stronger and the results more
significant.

As such, we have shown that the upper limit of the probability of a marker symbol appearing in
the data by chance is fully independent of the data we are looking in. It only depends on the
number of symbols a marker can have, as long as they are all uniformly distributed (= equally
probable) and a subset of the data symbols.

Example: character marker in full byte data

Each marker symbol can be any of the 52 letter characters. If they are generated randomly uniform the
probability of a match against any unknown byte in some data would be less than 1/52.

Appendix J | 225

Appendix J. Discussion on rejection of ugly markers

Sections 3.2 and Appendix I showed how long a strong marker should be and that its minimum
strength is independent of the data searched under the assumption that the marker is random. One
question is whether certain markers should be eliminated. If a MAC address marker comes out as
FF:FF:FF:FF:FF:FF from the random number generator it will match an completely erased flash.
Intuitively it seems like a good idea to reject certain markers and generate a new marker. However, in
practice it is not needed and it will cause the math surrounding the false positive calculations to be
invalid.

Let us investigate this by an example. The probability of the number generator making an all FF16
or 0016 MAC address is 2-47 which is so unlikely that this will not propose a problem. According to
Table 3-2 on page 24 the risk of accidental match of a MAC address in 1 GB of data is 0.00038%. If we
are prepared to accept the risk of a false positive at 0.00038% it does not make sense to take
precautions to avoid the much smaller risk of 2-47. It is like traveling at 200km/hour on a small, icy
mountain road with a motorcycle and worrying about being struck by lightning.

Also if we start to reject markers based on assumption of the data, there will be dependence
between marker and data and the relation Prob(M= d1 & D= d1)=Prob(M= d1) * Prob(D= d1) is false
and we cannot arrive at Equation 6-2. Thus we can safely trust random markers in any data as long as
the markers are of sufficient length and have enough large alphabet (symbol value range).

Appendix K | 227

Appendix K. Alternative: Maximum contrasting markers?

Section 3.2 proposed a method to generate random markers to be injected into the configurations. As
they are uniformly random we can think of them as white noise markers. In section Appendix I I
proved that we can quantify an upper limit of a false positive independent of the data we will search in.

An alternative marker generation method is to consider is the contrasting marker. The idea is to
try and create markers which stand out as much as possible from the data it is to be injected in. For
example, in an English text data with symbols a-z we could construct markers with the Swedish unique
characters symbols å, ä, and ö. From a mathematical standpoint, I believe it is equivalent to trying and
estimating the probability distribution of D and creating the M symbols so they differs as much as
possible. For example, construct an “orthogonal” M which would minimize the sum in the expression
below with notations taken from Section Appendix I:

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜 𝑚𝑚𝑚𝑚ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠 𝑀 𝑎𝑎𝑎 𝐷 = 𝑃𝑃(𝑀 = 𝐷) = �𝑃𝑃(𝑀 = 𝑑𝑥 & 𝐷 = 𝑑𝑥)
𝑑

 𝑥=1

At first thought this may sound easy, and intuitive: “In a world of green, markers should be red”.
And if we can minimize the sum above we would in fact also minimize the risk of a false positive for a
given marker length.

However, there are many practical problems that make this method difficult compared to the white
noise marker idea. I will address some of the difficulties I see:

• A scan of the data to estimate the probability distribution will only be an approximation. If
the whole memory is pre-scanned and we find, let us says, not a single 0x13 byte. Can we
then conclude the probability of that byte is 0 and consider it safe to use a single byte 0x61
(ASCII ‘a’) marker? I do not think so. Just because the (complex) system did not write that
byte in the memory is no guarantee that it will not. For an error free estimation of the
probability distribution we would need an infinite number of samples. Or complete
understanding of the complex internal mechanisms generating the data that is written to
the memory. That is not doable in practice.

• If we inject multiple markers in the same trials, then we are changing the distribution of
the data which has to be considered.

• Since the individual symbols making up the marker are not independent, I do not think we
can use the calculations in Section 3.2.

• Since the individual symbols making up the marker are constructed from and thus
dependent on the data we cannot arrive at equation Appendix I because:
Prob(M=dx & D=dx) is not equal to Prob(M= dx) * Prob(D= dx)

• If we do the data distribution pre-scan estimate, how long is it valid? Can we reboot?

• The config write and erase will change the data distribution. Should we also do a data
distribution post-scan estimate? What if they differ by much (even if we remove the
marker from the post scan to cancel its effect)? Should we use the post scan, pre-scan, or
some average?

• If the post-scan estimation concludes the marker is no longer optimal, should we reject the
test?

• Do we also need an estimation scan after the configuration with the marker saved, but
before the erase?

• What if the pre-scan is hard to perform? For example, in the case where a chip is soldered
and has to be removed for reading. Is a pre-scan estimation on a similar device enough or
has it to be on the same device?

There are a lot of questions I cannot answer before I use this technique with confidence. Most
importantly I have no clue as to how to quantify the risk of finding a contrasting marker by accident
(e.g. a false positive). As I see it, the only advantage of the contrasting marker compared to the white

228 | Alternative: Maximum contrasting markers?

noise marker would be the former may offer less probability of accidental occurrence in a data string.
However, since I do not know how to calculate that risk I cannot use it. Moreover, if we are concerned
about the risk we can increase the white noise marker length (at least for passwords, hostnames, or
other variable length configuration strings).

I conclude that the possible small benefits of the contrasting marker are outweighed by the
simplicity of the white noise marker. Hence, I will use white noise markers for my investigations.

TRITA-ICT-EX-2015:35

www.kth.se

	Abstract
	Keywords

	Sammanfattning
	Nyckelord

	Acknowledgments
	Table of contents
	List of Figures
	List of Tables
	List of Output Listings
	List of Algorithms
	List of Erase Procedures
	List of acronyms and abbreviations
	Conventions
	1 Introduction
	1.1 Background
	1.2 Problem definition
	1.2.1 Semantics of the word “erase”
	1.2.2 Semantics of the word “sensitive information”
	1.2.3 Semantics of the word “sanitization”

	1.3 Purpose
	1.4 Goals
	1.5 Delimitations
	1.6 Structure of the thesis

	2 Related work and useful technologies
	2.1 Storage media in embedded systems
	2.1.1 Electrically Erasable Programmable Read-Only Memory (EEPROM)
	2.1.2 Non-volatile Random Access Memory (NVRAM)
	2.1.3 Flash memory
	2.1.3.1 NAND Flash
	2.1.3.2 Flash standard interfaces
	2.1.3.3 Managed NAND flash
	2.1.3.4 Erasing managed flash
	2.1.3.5 Forensics of managed flash
	2.1.3.6 Example of managed flash storage: CompactFlash
	2.1.3.6.1 NAND flash chip
	2.1.3.6.2 Flash controller chip

	2.1.3.7 Example of unmanaged flash storage: linear PCMCIA Flash card

	2.2 Methods to inspect and erase nonvolatile memory
	2.2.1 Vendor’s erase procedure
	2.2.2 Configuration overwrite
	2.2.3 Delete and overwrite free space
	2.2.4 JTAG
	2.2.4.1.1 Locating the JTAG pins
	2.2.4.1.2 Accessing nonvolatile memory with JTAG
	2.2.4.1.3 JTAG hardware and software tools

	2.2.5 Other debug interfaces
	2.2.6 Custom software method
	2.2.7 Hidden debugging console ports
	2.2.8 External memory reader / programmer

	2.3 Previous work and useful information
	2.3.1 U.S. National Institute of Standards and Technology (NIST)
	2.3.2 Analog data remenance of Hard Disk Drives
	2.3.3 Embedded system analysis
	2.3.4 Cisco flash file systems
	2.3.5 Cisco boot sequence and configuration
	2.3.6 Cryptographic Erase

	3 Research methods
	3.1 Device platform and erase procedure to be tested
	3.2 Marker generation and the risk for a false positive
	3.3 Configuration and marker injection
	3.4 Configuration erasure
	3.5 Memory recovery and marker search

	4 Investigation of sanitization completeness
	4.1 Sanitization of the Cisco 1712 router
	4.1.1 Router overview and exterior interfaces
	4.1.2 Expansion cards: VPN card, ISDN and Ethernet switch
	4.1.3 ROM Monitor (Rommon) memory inspection
	4.1.3.1 Marker injection in NVRAM and flash
	4.1.3.2 Rommon Priv mode
	4.1.3.3 The Reading from NVRAM and investigating its structure
	4.1.3.4 Writing to NVRAM from Rommon priv mode
	4.1.3.5 The MPC862 internal memory controller logic
	4.1.3.6 Reading from flash and investigating its file system
	4.1.3.7 Writing to flash
	4.1.3.8 Conclusions on using the ROM monitor

	4.1.4 JTAG exploration of the CISCO1712 mainboard
	4.1.5 BDM port access to the CISCO1712
	4.1.6 Using a programmer to access the NVRAM of the CISCO1712
	4.1.7 Other board debug ports on the CISOC1712
	4.1.8 Investigation of the effect of vendor sanitization commands on CISOC1712
	4.1.8.1 The vlan.dat file
	4.1.8.2 Summary of sanitization using vendor factory reset commands.
	4.1.8.3 IOS verification for NVRAM chip erase

	4.2 Sanitization investigation of a HP ProCurve Switch 2626
	4.2.1 Switch overview and interfaces
	4.2.2 Hardware investigation
	4.2.3 File system structure investigation
	4.2.4 Flash memory address region
	4.2.5 ProCurve Switch 2626 configuration interface
	4.2.6 Investigating ProCurve Switch 2626 sanitization completeness
	4.2.6.1 Summary of sanitization using vendor factory reset commands.
	4.2.6.2 A method to sanitize the switch configuration

	4.3 Sanitization investigation of a HP ProCurve Switch 2824
	4.3.1 Investigating ProCurve Switch 2824 sanitization completeness

	4.4 Sanitization investigation of a ProCurve Switch 2610-48
	4.5 HP Procurve physical access security
	4.6 Summary of vendor sanitization routines for the HP Procurve switches

	5 Sanitty – Making a sanitizer utility for Procurve switches
	5.1 Software layers
	5.1.1 RS232 layer
	5.1.2 Term layer
	5.1.3 PCbench (ProCurveBench) layer
	5.1.4 Sanity_pc

	5.2 Commands
	5.3 Performance
	5.4 Compatibility
	5.5 Future improvements
	5.5.1 Flash chip autodetect
	5.5.2 Sense nvfserase command presence

	5.6 Forensic value and sanitization trust level
	5.7 Comparison with chip read by an external programmer
	5.7.1 Desoldering of the flash chip
	5.7.2 Cleaning the chip
	5.7.3 Reading out the data
	5.7.4 Method comparison and conclusion on Sanitty correctness

	5.8 Sanitization confirmation using Sanitty

	6 Conclusions and Future work
	6.1 Conclusions
	6.1.1 Proposal to vendors

	6.2 Limitations
	6.3 Future work
	6.3.1 Further development of Sanitty
	6.3.2 JTAGulator extest pin mapper
	6.3.3 Writing to NVRAM from Cisco Rommon
	6.3.4 Investigate more devices
	6.3.5 External storage of sensitive data
	6.3.6 Tool for the Motorola BDM interface
	6.3.7 In-circuit programming of a parallel EEPROM
	6.3.8 Proof of concept: Malicious code inside a flash controller
	6.3.9 Proof of concept: Remote VTP packet injection
	6.3.10 Fake a file spanning the entire flash
	6.3.11 Try to force a Procurve switch to reinitialize its flash file system
	6.3.12 Non perfect random number generator impact on marker strength

	6.4 Reflections

	References
	Appendices
	Appendix A. List of Erase procedures
	Appendix B. Excel function generating random string markers
	Appendix C. CISCO1712 investigations
	Appendix D. ProCurve Switch 2626 investigation
	Appendix E. ProCurve Switch 2824 investigation
	Appendix F. ProCurve Switch 2610-48 investigation
	Appendix G. Source Code for MPC862 mem controller decoder
	Appendix H. Sanitty source code
	Appendix I. Independence of data when searching for markers
	Appendix J. Discussion on rejection of ugly markers
	Appendix K. Alternative: Maximum contrasting markers?

